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Abstract. The practical application requires a vision-based face detector to work
inreal-time. The robot application uses the face detection method as the initial pro-
cess for the face analysis system. During its development, it utilizes an edge device
to be used to process sensor information. Jetson Nano is a mini portable computer
that is easily synchronized with sensors and actuators. However, traditional detec-
tors can work fast on this device but have low performance for occlusion cases,
multiple poses, and small faces. On the other hand, CNN-based detectors that
implement deep layers are slow to run on low memory GPU devices. In this work,
an efficient real-time face detector using a simple spatial attention module was
developed to localize faces rapidly. The proposed architecture consists of the back-
bone module to efficiently extract features, the light connection module to reduce
the size of the detection layer, and multi-scale detection to perform prediction of
faces on various scales. As a result, the proposed detector achieves competitive
performance from state-of-the-art fast detectors on several benchmark datasets. In
addition, this efficient detector can run at 55 frames per second in video graphics
array resolution on a Jetson Nano.

Keywords: Face detector - Efficient network - Jetson Nano - Real-time
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1 Introduction

Face detection is a popular field in computer vision for localizing facial areas in an
image. This method is the initial process used for advanced vision systems such as face
recognition, emotion, gender, and landmarks [ 1-4]. Face analysis is widely used in intel-
ligent video technology. It encodes data from specific facial components to determine
the characteristics and models of that information. Besides, face detection is a current
technology required in a portable device to unlock mobile phones and log in payment
accounts.

Nowadays, a security system is needed in every aspect to monitor the environment.
It is used to prevent crime that occurs in public areas [5]. Even developed countries use
it to find missing people. Intelligent video surveillance not only applies this monitoring
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application, but it can also explore the control system to optimize its performance.
The system needs to be supported by massive process memory availability because
the face detectors work with heavy compressing data. It requires expensive hardware
for the detector to work optimally. Another application is for Human-robot Interaction
(HRI) to implement a face detector on a robot supporting the facial recognition system’s
capabilities [6]. Even emotion recognition is applied to a robot service to predict the
expressions of the customer. Both methods require a face detector as an initial step to
localize the face area.

A face has a distinctive texture and color against the background. It is unique because
every human being has a different characteristic [7]. Information from facial organs is
important feature data to identify them. The eye has an ellipse shape and a characteristic
color that is different from the nose. The lips contain a reddish color that is different
from the eyebrows and chin. Although each organ’s shape is almost the same as the
other background features, the relationship between these features generates a face model
strengthening the distinguisher against the background. Therefore, the extraction of faces
and the relation between features is essential information to identify a face in the image.

Several works have presented conventional methods for detecting faces in an image.
The Viola-Jones discovered important facial features by applying Haar-like features
that were moved around using a sliding window [8]. The difference between light and
dark areas is used to identify interest facial features. Combining an integral image and
AdaBoost Learning generates a learning model that can work quickly to classify facial
and background features. Although this detector can work in real-time, it has low accu-
racy in occlusion cases, multiple poses, and small faces. The Haar-like feature has
limitations in capturing facial feature information that is blocked and small sizes. The
rotation-invariant drops the performance of this method in a real-case application for
finding parallel facial features.

The modern method introduced the Convolution Neural Network (CNN) as a robust
features extractor feature [9]. It employs convolutional operations on input features and
kernel shape. It adopts a neural network approach that updates the kernel weights to
improve network performance and minimize error rates. This method obtains a high
degree of accuracy for image classification work [10]. It can distinguish categories from
images by extracting specific information.

On the other hand, CNN capabilities have been implemented to distinguish facial
and background features to localize facial areas in an image. Several studies [11-13]
achieved high accuracy for the complicated challenge, but practical applications prevent
these methods from working in real-time. Moreover, robotic applications require a vision
system to work quickly on low-cost devices. The deep backbone tends to employ huge
filter layers, resulting in over a million total parameters. VGG-16 [14] and ResNet [15]
are benchmark backbones that have successfully filtered out important object features,
but these models also generate large parameter weights.

Additionally, MobileNet [16] and ShuffleNet [17] have been introduced as
lightweight CNN backbones, but these models have stagnated in real-time work when
implemented a low-cost device. Jetson Nano is an edge device generally used in IoT
(Internet of Things) and robotics application [18]. The CNN method is relatively
implemented in this hardware as a visual approach to sense the object and environment.
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The lightweight architecture employs a few slim layers of convolution and delivers
efficient computation power. Apart from preventing premature saturation, this network
produces a small number of parameters. However, superficial networks do not produce
high accuracy. Several methods apply an attention mechanism to improve the feature
extraction performance [19]. This module summarizes the essential features and gener-
ates attention weights to update the feature input. The spatial attention module captures
specific information based on the feature map’s size representing valuable information
from each cell element [20]. This block employs sigmoid activation to generate proba-
bility weights and produces low computation costs and parameters. It is very efficient to
increase the performance of a shallow backbone implemented in a real-time detector.

Based on the above issues, this study proposes a lightweight CNN with simple spatial
attention to rapidly localize facial areas. The contributions of this work are as follows:

1. A new efficient CNN architecture is used to build a face detector that is fast works
in a real-time application.

2. Asimple spatial attention module was introduced as a reinforcing module for shallow
backbones to support the network’s efficiency and effectiveness.
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Fig. 1. The proposed architecture of face detector. It uses a combination of 1 x 1 and 3 x 3
convolution as extractor features. Multilayer detection with anchors assignment plays a role in
predicting faces at various scales.

2 Proposed Architecture

In this section, the detail of our proposed architecture is explained. The proposed method
applies a shallow layer of Convolutional Neural Network and combines each module
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to produce an efficient architecture. Instead of significantly reducing the detector per-
formance, the main module consists of backbone, connection, and multi-scale detection
layers, as shown in Fig. 1.

2.1 Backbone Module

CNN-based architectures tend to use multiple layers in the backbone to extract essential
information. This layer has an impact on a large number of parameters and computations.
The proposed detector employs nine layers of convolution by combining 3 x 3 and 1
x 1 filters. Specifically, the backbone module consists of a shrink layer for reducing
the feature map size and a stem module that sequentially discriminates against facial
and background features. The shrink module employs a 7 x 7 filter at the beginning
of the stage to significantly reduce the feature map’s size [9]. It is followed by a 3 x 3
convolution with a stride of 2, generating the 32 x 32 with 128 channel feature map. This
filter effectively and efficiently captures facial features of various sizes [ 14]. Additionally,
in order to prevent saturation and vanishing gradients, ReL.U and Batch-Normalization
are used after the convolution process at each layer. ReLLU selects positive values and
ignores negative values from feature input, while Batch-Normalization maintains the
average distribution is close to 0 and the output standard deviation close to 1 for each
mini-batch.

The proposed detector is designed as a low weight efficiency detector by applying a
partial transfer structure at the stem module. An efficient split-residual block divides input
features map into two parts and unites them at the end of the module. Figure 2 (a) shows
that the split approach reduces computation at the start of the module without removing
other parts’ information. Half of the feature map is processed in feature extraction,
sequentially applying convolution. At the same time, the attention mechanism is applied
to other chunks. Finally, the efficient module concatenates the representation of the
essential elements and other extraction parts.

2.2 Simple Spatial Attention

Attention mechanism increases the interest features intensity by eliminating distinctive
features and reducing trivial information [20]. The feature location on each feature
map is valuable information. Thus, spatial information tends to show cues of extracted
facial features. The spatial attention module is proposed as an enhanced module without
producing excessive computation. Figure 2 (b) shows that average pooling for each cell
of the input features is applied to summarize the channel array information. The simple
spatial attention is defined as follows:

Sart = 0 (W 1AVG (x;)) (D

where o is sigmoid activation to generate probability weights from a single feature map
representation of the simple convolution (c1). This module updates each element of the
input features and implements element-wise multiplication with weighted maps. There-
fore, this module reduces non-facial features and enhances distinctive facial features to
strengthen the discrimination process.
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Fig. 2. The efficient split-residual as a stem module that sequentially extracts features and pro-
duces a few parameters and low-cost computation power (a). Simple spatial attention is employed
at part of the input feature map to capture the representation of the valuable elements (b).

2.3 Connection Module

CNN-based detectors use the connection module to link between the prediction layers.
Multilayer detection uses prediction layers with various scales and employs shrink blocks
to create feature maps of different sizes. Instead of using standard convolution, it employs
Depth-wise convolution with a stride of two to save the parameters. This convolution
does not apply a multi convolutional filter to each input channel, but it only uses a
single convolutional filter. This block emphasizes computational efficiency with fewer
multiplication and addition operations on each channel. Besides, this approach also
specifies that the number of relations between each kernel and input elements is equal
to the number of channels. A 3 x 3 kernel with linear operations is used to filter specific
object features. Furthermore, this is also followed by ReLU and BatchNormaliszation
to maintain network performance and to avoid accuracy dropped in the training process.

2.4 Multi-scale Detection and Anchor Assignment

The proposed detector is a one-stage architecture that predicts classes and face bounding
box location. It also assigns anchors of various sizes as initial bounding boxes. This fea-
ture map is generated by a 3 x 3 convolution, which predicts the category and regression
layers. Category prediction is face and none, while regression determines the location
coordinates (x, y) and fits the scale of bounding boxes, namely height (%) and width (w).
The variation in face size emphasizes that the detector needs to assign predictions with
various scales. A three-layered detection handles small, medium, and large faces, with
feature map sizes including 8, 16, and 32, respectively. In addition, anchor assignments
of various sizes are placed on each prediction layer. Anchors 32, 64, 96, and 128 were
assigned to predict small faces, while 192 and 256 for medium and large faces were
applied 384 and 512.



834 M. D. Putro et al.

2.5 Multi Boxes Loss Function

The CNN-based detector assigns a loss function to measure each prediction error com-
pared to the ground-truth label and location. Backpropagation exploits the performance
of this function to optimize the weight neurons and minimize prediction errors. The end
of the detection layer predicts regression (x, y, i, w) and label classes. Each prediction
variable has calculated the difference with the ground-truth value. Then the total loss
applies two objectives with the imbalanced parameter. The multi boxes loss is assigned
to each predicted anchor (i-th), which is defined as
_ ZZiLcat(Pi’P;k) ZiLreg(ri’ri*)

Loss(p,-, rl*) = N + N , 2)

where p;, p;‘, Ti, r;“ are the prediction category of classes, ground-truth label, four coordi-
nate vectors of predicted location, and ground-truth scale and location box, respectively.
Leas (pi, p;k) applies Softmax-loss [12] to calculate losses from predictive class classes,
while L1-smooth loss [11] is used to calculate regression losses L,q (r, rl*) It gives
greater weight to the loss classification side, which tends to produce lower scores at
the default training stage. Therefore, this manipulation balances the updating weight’s
performance in neurons to work fairly on both sides of the function.

3 Dataset and Implementation Setup

Proposed models are trained on a WIDER dataset containing 32,203 total images, with
only 12,800 of the training set is used by detector as knowledge to learn the characteristics
of facial features. Additionally, PASCAL face, AFW (Annotated Faces in the Wild), and
FDDB (face Detection Data Set and Benchmark) are test datasets for evaluating training
models. In order to enrich training data variation, random cropping, scale transformation,
color distortion, and horizontal flipping are applied as augmentation methods. The end
of this process produces 1024 x 1024 RGB as the input image size of training.

The training process divides all images dataset into 32 batches, shortening the time
from the network for learning data on small partitions. Proposed models are trained
through the end-to-end stage with random weights at the beginning of the epoch. The
Stochastic Gradient Descent (SGD) was used to optimize the neuron weights in the
backpropagation process with 5 - 10™* weight decay and 0.9 momentum. It assigns
different learning rate weights for the variation in the number of epochs. The initial
stage uses a 1073 learning rate for 200 epochs, followed by a 10~ learning rate for
100 epochs, the next 10~ learning rate for 50 epochs, and the last 20 epochs at a 1076
learning rate. Intersection over Union (IoU) of 0.5 is used to select predicted anchors that
overlap in the evaluation process. Finally, the training, evaluation, and real-time testing
processes of this detector are implemented in the PyTorch framework.

4 Experiments and Results

In this section, the proposed detector is tested for the performance of each module
and evaluates on benchmark datasets. It also compares Average Precision (AP) with
various competitors. Besides, the efficiency of the face detector is also tested in real-time
applications on the Jetson Nano device.



Efficient Face Detector Using Spatial Attention Module

4.1 Ablative Study

This ablative study comprehensively shows the strength of each proposed module,
including shrink, stem with attention, connection, and multi-scale detection module.
Each proposed module gradually is removed, it analyzes the accuracy and number
of parameters with the same training configuration. Table 1 shows that each module
increases the accuracy and number of parameters of the detector. The stem module
increases the accuracy of this detector by 4.12% and adds 220K parameters. Addition-
ally, the proposed attention module also increases the accuracy by 1.08%, but this only

adds a few parameters.

Table 1. Ablative study of the proposed modules on FDDB dataset

Modules Proposed detector
Simple spatial attention Vv
Stem i J
Connection VA J i
Multi-scale detection Vv i i i
Shrink v v v v v
Number of parameter 433.363 405.700 186.448 152.656 152.656
Average precision (%) 96.46 95.38 91.26 90.50 82.71
10 —
0.8 1
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Fig. 3. Evaluation of proposed detector on AFW dataset
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Fig. 4. Evaluation of proposed detector on PASCAL face dataset

4.2 Evaluation on Datasets

AFW Dataset. This dataset is obtained from Flickr images and has 205 images with
473 faces. It contains various background and viewpoint faces (e.g., ages, glasses, skin
colors, expression, etc.). Figure 3 shows that the proposed detector achieves 98.87% of
AP, which outperforms the STN detector. However, this detector is below the accuracy
of FaceBoxes [11] and FFCPU [12]. It has a more robust performance than commercial
detectors (Face++ and Picasa). Figure 6 (a) shows the prediction results for face locations
on several images. However, the proposed detector generates a false positive for the
texture of the background and the human component. It is successful in detecting faces
of various poses, occluded and of various sizes.

PASCAL Face Dataset. This dataset contains 1,335 faces from 851 images obtained
from the test set of PASCAL person dataset. It provides a variety of face appearances and
poses with indoor and outdoor backgrounds. Figure 4 shows that the proposed detector
outperformed FaceBoxes in this dataset by achieving 97.51% of AP. The qualitative
results in Fig. 6 (b) show that the detector can detect faces at various brackets and
produce error prediction on textures and colors similar to faces.

FDDB Dataset. This dataset obtains from news articles on Yahoo websites, which con-
tains 5,171 faces annotated in 2,845 images. It provides a variety of challenges, such
as occlusions, large poses, and low image resolutions. Proposed detectors are evaluated
on discrete criteria, as shown in Fig. 5. The AP on this graph means the true-positive
rate at 1,000 false positives. The performance of proposed detector is below LFFD [13],
FFCPU, and FaceBoxes. The shallow layer of the detector cannot correctly discriminate
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Fig. 5. Evaluation of proposed detector on FDDB dataset at 1000 false positives

facial and non-facial features, as shown in Fig. 6 (c). Hand features are predicted as
facial features. However, the proposed detector produces a lower number of parameters,
and it can work faster on the Jetson Nano device.

4.3 Runtime Efficiency

The CNN-based detector is useful if it can work quickly on low-cost devices. The CNN
models require large and expensive GPUs to work in real-time. In general, robotics
applications use a portable computer that can acquire sensor and actuator data. Jetson
Nano is an edge device that is easily connected and synchronized with robotic devices.
However, heavyweights detectors are slow to work in real-time on this device. The pro-
posed detector generates 433,363 parameters which are lower than the other competitors.
The LFFD detector achieved the best performance. However, this produces 2M train-
able parameters, as shown in Fig. 7. Therefore, this detector works slowly in real-time
applications.

Testing of the real-time application using a webcam as an input device, this data
is directly processed on each detector. The speed of each detector at different video
input sizes is shown in Fig. 8. The proposed detector outperformed competitors’ speed
by achieving 54.87 FPS at VGA resolution. It differs 13 FPS from the slower FFCPU
detector. The implementation at Full HD resolution shows that the proposed detector can
work in real-time by reaching a speed of 25.89 FPS, while other detectors work slowly
with speeds below 20 FPS. The superficial model of the proposed detector emphasizes
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Fig. 6. Visualization of result from proposed detector on AFW (a), PASCAL face (b), and FDDB
datasets (c)

the computational efficiency and the number of parameters. The backbone module pro-
duces a small number of parameters, but it maintains the quality of feature extraction.
Furthermore, the simple spatial attention module improves detector performance without
significantly slowing down the real-time detector speed.
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Fig. 8. Comparison of data processing speed in real-time application with other competitors at
different video input sizes.

5 Conclusions

This work presented an efficient real-time face detector using a simple spatial attention
module implemented on a Jetson Nano. The proposed architecture consists of three main
modules, a backbone, a connection, and multi-scale detection. The backbone plays an
essential role in discriminating facial and background features by applying a simple spa-
tial attention block. This module effectively improves backbone performance without
adding significant number of parameters. Proposed detectors produce trainable param-
eters that are lower than CNN-based fast detectors. Finally, the results showed that the
proposed detector achieved competitive performance with state-of-the-art fast detectors
and outperformed their speed by 55 FPS in real-time on a Jetson Nano. In the future,
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the quality of model training can be improved by implementing and exploring IoU loss
and Focal Loss without reducing speed in real-time applications.
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