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Abstract—Multiple people tracking is a fundamental yet chal-
lenging task in the computer vision field, which served as a pri-
mary process for high-level tasks such as human behaviors, action
recognition, pose estimation. Person tracking is decomposed into
detection and re-identification (re-ID) sub-tasks. Conventionally,
the detection learns classification and regression objectives si-
multaneously; and the re-ID sub-task is treated as a classifica-
tion task. Therefore, person tracking is multiple task learning
corresponding to multiple loss functions (multiple objectives)
with one bounding box regression and two classifications. The
difference between various tasks is as follows: the ranges of each
objective are inconsistent, the contribution of each task to the
overall gradient is altered, and the learning pace of each task is
different (level of difficulty). It leads to an objective imbalance in
multi-task learning. Previous methods proposed weighting factors
as new hyper-parameters to balance the ranges of each task.
The dimension of search space for manually tuning these hyper-
parameters is high, which depends on the number of tasks. Ac-
cordingly, selecting reasonable weighting factors is difficult and
complicated. This paper introduces dynamic multi-loss weighting
(DMW) with simple but effective in which the weighting factors
are dynamically changed during training without introducing
any hyper-parameters. The dynamic weights are optimized to
balance regression and classification objectives, which depend
on the difficulty level of each task and the correlation between
each task. Additionally, the general convolution operations are
spatially invariant to some degree, which hinders the network’s
performance. Hence, this work employs the position-sensitive
operation improving feature extraction. The proposed method
is conducted on the MOT17 challenging benchmark, which
outperforms the online multiple people trackers without using
additional data.

Index Terms—Dynamic multi-loss weighting, position-sensitive
operation, multiple people tracking, surveillance systems

I. INTRODUCTION

Multiple people tracking is the basic task for understanding
person in visual data such as images and videos. The input of
multiple people tracking is a consecutive video, separated into
discrete frames at 30 FPS (frames per second). These frames
are considered as images to be forwarded into the network.
The output of multiple people tracking is the detection results
predicting classification scores and localization (offsets) of
each person in all frames, re-ID scores are used to associate
person detection over time-domain (predicting trajectories).
Multiple people tracking has been widely used in many scene
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understanding applications such as intelligent surveillance
systems, robotics, self-driving vehicles.

Recently, the deep learning technique achieved great per-
formance in the image classification, object detection, and
object segmentation, which brought significant improvement in
solving multiple people tracking tasks. Many trackers applied
tracking-by-detection methods only paying attention to the
data association network for predicting trajectories. It means
the detection results created are available in all frames and
they match detection across frames according to re-ID score or
classic methods, e.g., Kalman filter and Hungarian algorithm.
However, the data association is directly affected by detection
performance. Separating detection and data association into
different networks hampers the overall performance. Hence,
this paper uses the single network predicting detection and
re-ID score according to task-dependent.

(a) Classification loss (b) Regression loss

(c) Re-ID loss (d) Total loss
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Fig. 1. The learning paces of regression, classification, and re-ID tasks with
the proposed network (Fig. 2 without using the proposed DMW) are shown.
The model is trained with hard weighting factors.

Multiple people tracking is multi-task learning (multi-loss
functions) including detection and re-ID task. The detection
minimizes classification and regression objectives simulta-
neously. The re-ID task is treated as a classification task.
Accordingly, person tracking solves one bounding box re-
gression and two classification tasks. However, various tasks
have different properties: (1) The range of each objective are
inconsistent since the regression task takes input in logarithmic



transformation with range [0,∞) while classification task uses
softmax or sigmoid function to normalize scores between
intervals [0, 1], (2) The contribution of each task to the overall
gradient is different because the gradient norm of each task is
different, (3) The level of difficulty of each task is different
because the regression task focuses on accurate bounding box
localization of foreground samples, the classification learns
semantic features to classify person and background, and the
re-ID task learn appearance features to distinguish two people
or person versus distractor. Therefore, it leads to the objective
imbalance in multi-task learning. For instance, we plotted
the learning paces of the tracking network during training
on the MOT17 dataset [1] in Fig. 1. The classification loss
values are always smaller than the regression loss values.
Additionally, classification loss converges faster than the re-
gression loss. Usually, multiple losses are accumulated into
the single total loss by using a linear weighted sum of losses.
Previous trackers such as CTracker [2], CenterTrack [3] and
detectors that are RetinaNet [4], FCOS [5], Faster R-CNN
[6] proposed weighting factors as extra hyper-parameters to
multi-loss learning. These weights tuning by hand are difficult
and complicated because the dimension of search space is
high for multiple tasks. Moreover, balancing losses by linear
weighting factors as task-independent will hinder the overall
performance since regression and classification tasks have
a positive correlation. During training, propagating gradient
signals to the network of easy samples and hard samples are
different at each epochs. Hence, weighting factors are fixed
during training in a straightforward way. This paper proposes
dynamic multi-loss weighting (DMW) without introducing
any hyper-parameter by investigating the correlation between
regression and classification task (task-dependent), and the
difficulty level of each task. These weighting factors are
dynamically changed during training.

The normal convolution operations are spatially invariant,
which are suitable for several tasks such as image classi-
fication, object segmentation. The regression task leverages
the spatially variant property to predict person coordinate
precisely. Inspired by CoordConv [7], this paper applies
position-sensitive operation for embedding pixel coordinates
into feature map.

The proposed method is implemented on the MOT17
challenging benchmark to evaluate the effectiveness of the
DMW approach and position-sensitive operation in the one-
shot tracker, which surpasses the online state-of-the-art tracker
without using extra data.

II. RELATED WORKS

Multiple people tracking. Multiple people tracking is
classified into the online method and offline method. The
online tracking utilizes the last frames and current frames
as input, thus avoiding high model complexity. While the
offline tracking takes the last frames, current frames, and
future frames as input of the network. Although offline method
achieves high performance due to leveraging motion extraction
and optical flow, it is still high computational cost. The online

tracking in [8], [9], includes detection and data association
step. Since, MOT challenging [1] provided detection results
generated by detectors such as DPM, Faster R-CNN [6], the
most of tracking method focuses on data association. JDE
[10], CTracker [2], CenterTrack [3], and FairMOT [11] joined
detection and re-ID into single end-to-end network, which
employs re-detection to improve data association task. This
paper uses joined network as the baseline.

Person Detection. Many popular detectors such as Reti-
naNet [4], FCOS [5], and Faster R-CNN [6] is the generic
detection for detecting many categories in the scene, which is
potential source to specific category such person, car, etc. This
work applies RetinaNet [4] for detection step due to simplicity
of it.

Multi-loss weighting. Multi-task weighting [12] introduced
uncertainty weighting for scene geometry and semantics,
which investigates homoscedastic of the regression task and
classification task. JDE [10] and FairMOT [11] applied the
uncertainty perspective for balancing multiple losses of track-
ing task. SWN [13] proposed sample weighting networks
embedded into object detection network to predict the weight
for each sample according to the difficulty level of each
sample. Specifically, SWN used several fully connected layers
with the input of classification loss, regression loss, IoU score,
and classification score to learn sample weight (samples’
uncertainty).

Coordinate Convolution. CoordConv [7] proposed coordi-
nate convolution with simple operation concatenated to feature
map in which convolutional kernel learns the coordinates (x,
y) of the input data. SOLO [14] inherited the CoordConv op-
eration to improve localized feature map learning for instance
segmentation task. This paper also inspires this operator for
detection and re-ID task in multiple people tracking systems.

III. THE PROPOSED METHOD

The online single end-to-end network is described in Fig.
2. The input of the network is the adjacent frames {Ft−2,
Ft−1, Ft} as the tracklet. The backbone network is used to
extract informative features. In this paper, ResNet-50 [15] pre-
trained on ImageNet [16] is employed as feature extraction.
This backbone consists of five stages {S1, S2, S3, S4, S5}
corresponding to five down-scaled times to reduce the spatial
resolution. Following common methods such as RetinaNet
[4], FCOS [5], BNLNet [17], FPN [18], and EFPN [19],
we only selects feature maps {S3, S4, S5} to construct the
feature pyramid {P3, P4, P5, P6, P7} treating scale imbalance
in detection task. Each tracking head includes classification,
regression, and re-ID branch. Each branch consists of four con-
volutional layers in which each layer contains 3×3 convolution
+ Group Normalization + ReLU activation function, and one
3×3 convolution operation that the output channel dimension
is suitable to the specific task, e.g., channel dimension is 2A
for the classification branch, 8A for the regression branch, and
A for re-ID branch (A is the number of anchor boxes tiled
on each location of the input frame). The DMW performs
a weighted sum of losses as a linear operation, which will
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Fig. 2. The overall architecture consists of three parts: backbone network, neck, and tracking head. The backbone network served as feature extraction takes
the current frame and past frame as input. The neck part forming a pyramid feature {P3, P4, P5, P6, P7} takes three feature maps {S3, S4, S5} from stage
3, stage 4, and stage 5 of the backbone network to gather low-level and high-level feature. Each tracking head includes three branches: classification branch,
regression branch, and re-ID branch. 4× denotes four convolutional layers in which each layer contains one 3×3 convolution operation following by Group
Normalization and ReLU activation function. 1× denotes one convolution operation without normalization and activation function. H, W is the height and
width of the feature map. A indicates the number of anchor boxes per location. Lcls, Lreg , Lreid, Ltotal are classification, regression, re-ID loss, and total
loss, respectively. DMW is the dynamic multi-loss weighting function.

discuss in section III-A. Note that position-sensitive operation
works as normalized pixel coordinates, will describe in sub-
section III-B.

A. Dynamic Multi-Loss Weighting (DMW)
As shown in Fig. 2, three losses corresponding to three tasks

are accumulated by Dynamic Multi-Loss Weighting (DMW)
operation. In normal way, the classification loss Lcls is Focal
loss [4], defined as:

Lcls =
1

Npos

Npos∑
i=1

FL(pi, p̂i), (1)

FL(pi, p̂i) = −a(1− pi)b log(p̂i), (2)

where Npos is number of positive sample. pi, p̂i is clas-
sification score, class label respectively. FL(pi, p̂i) is the
Focal loss in which a, b are balanced variant, modulating
factor, respectively. The range of the classification score is
constrained by intervals [0, 1] due to that:

pi = δ(si) =
1

1 + e−si
, (3)

where δ is sigmoid function normalizing digit score si to get
probability of each class.

In this paper, the regression loss Lreg is smoothL1 loss [6],
computed as:

Lreg =
1

Npos

Npos∑
i=1

∆∑
j

smoothL1(oi,j − ôi,j), (4)

where Npos is number of positive samples. oi,j , ôi,j is the
offset prediction and transformed ground truth bounding box.
∆ = {∆xi,∆yi,∆wi,∆hi} is the transformed coordinates
(center (x, y), width, and height of the bounding box) by
logarithmic algorithm, computed as:



∆xi = (xi − xi,a)/wi,a, ∆yi = (yi − yi,a)/hi,a,

∆wi = log(wi/wi,a), ∆hi = log(hi/hi,a), (5)

where {xi, yi, wi, hi} is the offset prediction (center, width,
height of bounding box i). {xi,a, yi,a, wi,a, hi,a} is the coor-
dinates of positive anchor box i. As shown in Equation 5, the
center (∆xi,∆yi) of the bounding box is still in real number
and (∆wi,∆wi) is transformed by log function. It means the
range of bounding box prediction belongs to [0,∞].

Similar with CTracker [2], the re-ID loss Lreid is Focal loss
[4], defined as:

Lreid =
1

Npos

Npos∑
i=1

FL(idi, îdi), (6)

where idi, îdi is identification score, truth label according
to IoU score (Intersection of Union). Since re-ID loss is the
classification loss, the range of it is [0, 1].

Finally, the total loss Ltotal is the weighted sum of losses:

Ltotal = αLcls + βLreg + γLreid, (7)

where α, β, and γ are the weighting factors to balance the
range of losses.

In the conventional approach, the weighting factors are
tuned by many experiments to select optimal values. It takes
many days for each implementation. For instance, Table I
shows the various selection of weighting factors. Note that
the search space with three tasks is large. During training, the
weighting factors are fixed, thus the network can not determine
the difficulty level of each sample to learn the model in an
efficient way.

TABLE I
SEVERAL EXPERIMENTS WITH THE FIXED WEIGHTING FACTORS ON THE

MOT17 VALIDATION SET.

α β γ MOTA↑ IDF1↑ MOTP↑ MT↑ FP↓
0.5 1.0 1.5 74.8 65.8 85.2 269 1972
0.5 1.5 1.0 74.8 65.2 85.6 260 2045
0.5 2.0 1.0 74.3 65.2 85.5 261 2057
1.0 1.0 1.0 73.1 63.3 85.3 245 2229
1.0 0.5 1.5 74.9 65.3 84.9 273 1922

To avoid sub-optimal weighting factors, this paper intro-
duces dynamic multi-loss weighting (DMW) operation. The
weighting factors in Equation 7 is computed as:

α =
Lreg + Lreid

Lcls + Lreg + Lreid
,

β =
Lcls + Lreid

Lcls + Lreg + Lreid
, (8)

γ =
Lcls + Lreg

Lcls + Lreg + Lreid
.

Note that the Lcls, Lreg, and Lreid are the loss computed for
each sample. Therefore, the weighting factors α, β, and γ is
free hyper-parameter because it is dynamically adapted during
training. In other aspects, the weighting factors measure the
difficulty level of each sample. For example, the hard sample
has high classification loss but regression loss and re-ID loss
are arbitrary, thus the DMW will control the regression loss
and re-ID loss to uniform values. Hence, the DMW makes the
range of three tasks consistent.
α, β, and γ are mutual factors due to that they can adapt

the parameter of the network according to task-dependent.
Conventionally, the regression and classification task have
a positive correlation, thus the network will normalize the
learning pace based on dynamic weighting factors.

B. Position-sensitive Operation

The normal convolution operation is spatially invariant to
some degree, which will hinder network performance to learn
general cases. The spatial invariance is suitable for the image
classification, segmentation task. Followed by CoordConv [7],
the position-sensitive operation is used to be well spatial
variant, illustrated in Fig. 2. First, we generate two tensors
with the same spatial resolution of the input feature map. Two
tensors corresponding to tensor x, and tensor y, consist of
x-y pixel coordinates (location x and location y) normalized
to the intervals [−1, 1]. It means the convolution operation
accesses localized coordinates of input data. The two tensors
are concatenated into the input feature map with channel
dimension (C + 2). This operation is easy to implement and
integrate into CNNs architecture.

IV. EXPERIMENTS

A. Dataset and Evaluation Metrics

The challenging benchmark MOT17 [1] is used to measure
the effectiveness of the proposed method. This dataset contains
7 videos for training and 7 videos for testing, which captured
by single-camera. Since MOT17 did not provide ground truth
for evaluation, the results are submitted to the evaluation
system1.

All results are measured by three prime metrics such as Mul-
tiple Object Tracking Accuracy (MOTA), ID switch (IDF1)
proposed by CLEAR MOT [20], and Higher Order Tracking
Accuracy (HOTA) proposed by [21]. Note that MOTA and
IDF1 are standard metrics for evaluating detection and re-
ID tasks without measuring localization perspective. HOTA
measures whole aspects of tracking performance such as
detection, localization, and trajectories problem.

B. Implementation Details

All implementations are utilized the deep learning Pytorch
framework. The backbone ResNet-50 is pre-trained on Im-
ageNet [16]. The weight initialization of the added convo-
lutional layers in feature pyramid FPN and five consecutive
convolutional layers on each tracking head is filled from a

1https://motchallenge.net/

https://motchallenge.net/


TABLE II
THE COMPARATIVE PERFORMANCE ON MOT17 TESTING SET WITH SOTA METHODS

Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓
DMAN [22] 48.2 55.7 75.9 19.3 38.3 26218 263608 2194
MOTDT [23] 50.9 52.7 76.6 17.5 35.7 24069 250768 2474
Tracktor [24] 53.5 52.3 78.0 19.5 36.6 12201 248047 2072
Tracktor+CTDet [24] 54.4 56.1 78.1 25.7 29.8 44109 210774 2574
DeepSORT [9] 60.3 61.2 79.1 31.5 20.3 36111 185301 2442
CTracker [2] 66.6 57.4 78.2 32.2 24.2 22284 160491 5529
Ours 67.4 55.0 78.2 32.7 23.1 21033 156654 6330

(MOTP: Multiple Object Tracking Precision, MT: Mostly Tracked Trajectories, ML: Mostly Lost Trajectories, FP: False Positive, FN: False Negative, IDS: Identity Switches)

normal distribution. The tracker is trained on GPU Tesla V100
SXM2 (Cuda 10.2, CuDNN 7.6.5) for 100 epochs with a batch
size of 8. The initial learning rate is 3×1e5 and reduced 10
times at epoch 50, and epoch 75. The Adam optimizer is
used to minimize the objective function. Following common
settings RetinaNet [4], and FCOS [5], the hyper-parameters in
Equation 2 are set as a = 0.25, b = 2.0. Note that the number
of anchor boxes tiled on each location is one for reducing
model complexity.

V. RESULTS

This section describes the main results evaluated on the
testing set and ablation study for measuring the importance
of each component on the sub-training set2.

A. Ablation Study

The importance of individual component. The experiment
is implemented to investigate the effect of each component on
the overall performance, shown in Table III.

TABLE III
THE IMPORTANCE OF EACH COMPONENT

Baseline PSO DMW MOTA↑ IDF1↑ MOTP↑ FP↓
X 73.1 63.3 85.3 2229
X X 74.8 65.5 85.6 2137
X X 75.1 65.4 84.8 2039
X X X 75.7 66.0 85.3 1959

The baseline is the simplest network of the single end-
to-end tracker, which achieves 73.1% of the MOTA score.
In this version, the weighting factors are set as uniform
(α = 1, β = 1, and γ = 1) followed by CTracker [2].
PSO is the positive-sensitive operation concatenated to the
input feature map of each tracking branch, which boosts the
baseline performance by 1.7% of the MOTA score. DMW
is dynamic multi-loss weighting to balance objectives, gets
75.1% of the MOTA score. Remarkably, the full version of
the proposed method achieves 75.5% of MOTA score, gains
the baseline performance by a large margin. Note that MOTP,
FP is the multiple object tracking precision, the number of
false positives.

Dynamic Multi-Loss Weighting. This section analyzes
how the DMW is introduced for correlating multi-task learn-
ing. The result is illustrated in Table IV.

2https://github.com/dendorferpatrick/MOTChallengeEvalKit

TABLE IV
DYNAMIC MULTI-LOSS WEIGHTING WITH CORRELATION LEARNING

Method MOTA↑ IDF1↑ MOTP↑ MT↑ FP↓
DMW w/correlation 75.1 65.4 84.8 281 2039

DMW w.o/correlation 73.8 64.7 85.6 256 1829

(w/correlation: with correlation learning, w.o/correlation: without correlation learning)

As shown in Equation 8, the weighting factors is dynamically
changed during training, which depends on the correlation
learning between each task to balance loss values. If each
weighting factor is independently changed, the performance
drops by 1.3% of MOTA score compared with correlation
learning. Specifically, DMW without correlation learning has
α = (Lcls)/(Lcls + Lreg + Lreid), β = (Lreg)/(Lcls +
Lreg + Lreid), and γ = (Lreid)/(Lcls + Lreg + Lreid). The
denominator is kept as Equation 8 to normalize weighting
factors.
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Fig. 3. HOTA score and error components at different threshold loc alpha.

Error Analysis. The tracking error includes detection er-
rors, localization errors, and association errors, which are
shown in Fig. 3. The proposed method achieves the average
HOTA score of 0.59 from loc alpha=0.05 to loc alpha=0.95
(localization thresholds) with a step size of 0.05. DetA got
a score of 0.65 indicates detection accuracy, which decom-
posed into DetRe (detection recall) and DepPr (detection
precision). The association accuracy (AssA) measures the

https://github.com/dendorferpatrick/MOTChallengeEvalKit
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Fig. 4. The visualization of the proposed method with some frames.

overlap between predicted trajectories and ground truth, which
consists of AssRe (association recall) and AssPr (association
precision). Finally, LocA (localization accuracy) achieves a
score of 0.87. The qualitative results of the proposed method
are shown in Fig. 4. The video demos are available at
https://bit.ly/3bdXqSv

B. Comparison with State-of-the-art Online Tracker

This subsection describes the main performance of the
proposed approach on the MOT17 test set, shown in Table II.
MT, ML indicates Mostly Tracked Trajectories, Mostly Lost
Trajectories. FP, FN denotes the number of False Positives and
False Positive. IDS is the number of Identity Switches. The
bold font shows the best performance among all state-of-the-
art trackers.

Our method surpasses all online trackers by a large margin,
which achieves 67.4% of the MOTA score. Specifically, the
proposed method outperforms DMAN [22], MOTDT [23],
Tracktor [24], Tracktor with CT detection, DeepSORT [9] and
CTracker [2]. Moreover, our DMW, PSO did not affect the
inference time, which applies to any tracking method.

VI. CONCLUSION

This paper introduced Dynamic Multi-Loss Weighting for
balancing losses, dynamically adapted by the task-dependent,
and the range of each task during training. Additionally,
the position-sensitive operation is used for normalizing pixel

coordinate to be spatially variant. The proposed method
is evaluated on the challenging benchmark MOT17, which
outperforms state-of-the-art trackers without affecting model
complexity. In the future, the proposed method will evaluate
the performance of MOT16, MOT20, and PETS datasets.
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