
Practical Analysis on Architecture of EfficientNet

Van-Thanh Hoang

Faculty of Engineering-Technology

Quang Binh University

Quang Binh, Vietnam

Email: thanhhv@qbu.edu.vn

ORCID: 0000-0003-3478-9954

Kang-Hyun Jo

School of Electrical Engineering

University of Ulsan

Ulsan, Korea

Email: acejo@ulsan.ac.kr

ORCID: 0000-0001-8317-6092

Abstract—Convolutional neural networks (CNNs) have shown
significant performance in solving various artificial intelligence
tasks in recent years. However, the increasing model size has
raised challenges in adopting them in limited-resource appli-
cations. Recently, many research works try to build efficient
networks which are as small as possible while still have acceptable
performance. The state-of-the-art architecture is EfficientNet. On
the ImageNet challenge, with a much fewer parameter calculation
load, EfficientNet could take its place among the state-of-the-
art. EfficientNet can be considered a group of convolutional
neural network models. But given some of its subtleties, it’s
actually more efficient than most of its predecessors. It uses the
inverted bottleneck residual blocks of MobileNetV2, in addition
to squeeze-and-excitation modules (SE modules). This paper
investigate the effect of SE modules on the performance of
EfficientNet-B0, the basic network model in the EfficientNets
series, by repositioning/removing the SE modules.

Index Terms—CNN architecture, efficientnet, SE module

I. INTRODUCTION

Deep convolutional neural networks (CNNs) have shown

significant performance in many computer vision tasks in

recent years. The primary trend for solving major tasks is

building deeper and larger CNNs [2], [12]. The most accurate

CNNs usually have hundreds of layers and thousands of

channels [2], [5], [13], [16]. Many real-world applications need

to be performed in real-time and/or on limited-resource mobile

devices. Thereby, the model should be compact and low

computational cost. The model compression work is actually

investigating the trade-off between efficiency and accuracy.

Recently, many research works focus on the field of design-

ing efficient architecture. Inspired by the architecture proposed

in [7], the Inception module is proposed in GoogLeNet [12]

to build deeper networks without increase model size and

computational cost. Then it is further improved in [13] through

factorizing convolution. The Depthwise Separable Convolu-

tion (DWConvolution) generalized the factorization idea and

decomposed the standard Convolution into a depthwise convo-

lution followed by a pointwise 1×1 convolution. EfficientNets

[15], a family of efficiently scaled convolutional neural nets,

have recently emerged as state-of-the-art models for image

classification tasks. EfficientNets optimize for accuracy as

well as efficiency by reducing model size and floating point

operations executed while still maintaining model quality. The

basic network architecture of the model is designed by using

neural architecture search. By enlarging the basic model of

EfficientNets, a series of EfficientNets models are obtained.

This series of models defeated all previous convolutional

neural network models in terms of efficiency and accuracy. In

particular, EfficientNet-B7 obtained top-1 accuracy of 84.4%

and top-5 accuracy of 97.1% on the ImageNet dataset. And

compared with other models with the highest accuracy at the

time, the size was reduced by 8.4 times and the efficiency

was increased by 6.1 times. And through transfer learning,

EfficientNets reached the most advanced level at the time on

multiple well-known data sets.

This paper investigates the EfficientNet-B0, the basic net-

work model in the EfficientNets series. The core structure

of the network is the mobile inverted bottleneck convolu-

tion (MBConv) module, which also introduces the attention

thought of the compression and excitation network (Squeeze-

and-Excitation Network, SENet) [4]. We create some varia-

tions of EfficientNet-B0 by repositioning/removing SE mod-

ules. All variants are then trained on ImageNet dataset [10]

to know the effect of SE modules on the performance of

EfficientNet-B0.

II. RELATED WORK AND BACKGROUND

A. Related Work

Recently, there are many studies focus on the designing

efficient architectures approach [3], [5], [11], [17], [18]. They

have explored efficient CNNs that can be trained end-to-end.

MobileNetV1 [3] introduced depthwise separable convolu-

tions as an efficient replacement for traditional convolution

layers. Depthwise separable convolutions effectively factorize

traditional convolution by separating spatial filtering from the

feature generation mechanism. It consists of two separated

layers. The first layer uses a light weight depthwise convolu-

tion operator. It applies a single convolutional filter per input

channel to capture the spatial information in each channel.

Then the second layer employs a pointwise convolution, means

a heavier 1 × 1 convolution, to capture the cross-channel

information for feature generation.

MobileNetV2 [11] introduced the linear bottleneck and

inverted residual structure in order to make even more efficient

layer structures by leveraging the low rank nature of the

problem. This structure is shown on Figure 1a and is defined

by a 1 × 1 expansion convolution followed by depthwise



convolutions and a 1×1 projection layer. The input and output

are connected with a residual connection if and only if they

have the same number of channels and spatial sizes. This

structure maintains a compact representation at the input and

the output while expanding to a higher-dimensional feature

space internally to increase the expressiveness of nonlinear

perchannel transformations.

EfficientNets [15], a family of efficiently scaled convolu-

tional neural nets, have recently emerged as state-of-the-art

models for image classification tasks. EfficientNets optimize

for accuracy as well as efficiency by reducing model size

and floating point operations executed while still maintaining

model quality.

The architecture of EfficientNet was designed by performing

the neural architecture search, a technique for automating the

design of neural networks. It optimizes both the accuracy

and efficiency as measured on the floating-point operations

per second (FLOPS) basis. This developed architecture uses

the mobile inverted bottleneck convolution (MBConv). The

researchers then scaled up this baseline network to obtain

a family of deep learning models, called EfficientNets. The

architecture of EfficientNet-B0, the basic network model in

the EfficientNets series, is given in the Table I.

The efficiency is the utmost important problem for mobile-

size convolution model. The efficient operations have been

extensively studied in the MobileNet family [11], [14]. Spare

depthwise convolution and the inverted bottleneck block are

the core ideas for efficient mobile size network. MnasNet [14]

and EfficientNet [15] takes a step further to develop MBConv

operation based on the mobile inverted bottleneck in [11].

EfficientNet shows that the models with MBConv operations

not only achieving the state-of-the-art in ImageNet challenge

but also very efficient.

B. Squeeze-and-Excitation Block

Squeeze-and-Excitation Networks [4] introduce a building

module for CNNs that improves channel interdependencies at

almost no computational cost. CNNs use their convolutional

filters to extract hierarchal information from images. Lower

layers find trivial pieces of context like edges or high frequen-

cies, while upper layers can detect faces, text or other complex

geometrical shapes. They extract whatever is necessary to

solve a task efficiently.

All of this works by fusing the spatial and channel infor-

mation of an image. The different filters will first find spatial

features in each input channel before adding the information

across all available output channels.

All you need to understand for now is that the network

weights each of its channels equally when creating the output

feature maps. SENets are all about changing this by adding a

content aware mechanism to weight each channel adaptively.

In it’s most basic form this could mean adding a single

parameter to each channel and giving it a linear scalar how

relevant each one is.

However, the authors push it a little further. First, they get a

global understanding of each channel by squeezing the feature

TABLE I
EFFICIENTNET-B0 BODY ARCHITECTURE. MBCONV: MOBILE INVERTED

BOTTLENECK CONVOLUTION, THE FOLLOWING NUMBER IS THE

EXPANDED FACTOR.

Stage Operator Resolution #Channels #Blocks

i F̂i Ĥi × Ŵi Ĉi L̂i

1 Conv3x3 224× 224 32 1
2 MBConv1, k3x3 112× 112 16 1
3 MBConv6, k3x3 112× 112 24 2
4 MBConv6, k5x5 56× 56 40 2
5 MBConv6, k3x3 28× 28 80 3
6 MBConv6, k5x5 14× 14 112 3
7 MBConv6, k5x5 14× 14 192 4
8 MBConv6, k3x3 7× 7 320 1
9 Conv1x1 & Pooling 7× 7 1280 1
10 FC 1× 1 1000 1

maps to a single numeric value. This results in a vector of size

n, where n is equal to the number of convolutional channels.

Afterwards, it is fed through a two-layer neural network, which

outputs a vector of the same size. These n values can now be

used as weights on the original features maps, scaling each

channel based on its importance.

Specifictly, at first, they squeeze each channel to a single

numeric value using average pooling. Then, a fully connected

layer followed by a ReLU function adds the necessary non-

linearity. It’s output channel complexity is also reduced by

a certain ratio. After that, a second fully connected layer

followed by a Sigmoid activation gives each channel a smooth

gating function. At last, they weight each feature map of the

convolutional block based on the result of the side network.

These four steps add almost no additional computing cost (less

than 1%) and can be added to any model.

The authors show that by adding SE modules to ResNet-

50 you can expect almost the same accuracy as ResNet-101

delivers. This is impressive for a model requiring only half of

the computational costs. The paper further investigates other

architectures like Inception, Inception-ResNet and ResNeXt.

The latter leads them to a modified version that shows a top-5

error of 3.79% on ImageNet.

III. NETWORK ARCHITECTURE

A. Architecture of EfficientNet-B0

EfficientNet-B0 is the basic network model in the Effi-

cientNets series. The core structure of the network is the

mobile inverted bottleneck convolution (MBConv) module,

which also introduces the attention thought of the compression

and excitation module [4]. Its architecture is shown in Table I.

All layers are followed by a batchnorm and ReLU nonlinearity

activation with the exceptionof the final fully connected layer

which has no nonlinearity and feeds into a softmax layer

for classification. Down sampling is handled with strided

convolution in the depthwise convolutions of first block in

each stage, as well as in the first layer. A final average pooling

reduces the spatial resolution to 1 before the fully connected

layer.



DWConv

1x1 Conv

1x1 Conv

(a)

DWConv

1x1 Conv

1x1 Conv

SE Block

(b)

DWConv

1x1 Conv

1x1 Conv

SE Block

(c)

FC

Sigmoid

Global Pooling

FC

(d)

Fig. 1. Architecture of building block. a) The inverted residual block of MobileNetV2 [11] (which without SE module); b) The inverted residual block with
SE module behind the main Depthwise Convolution of EfficientNet [15]. c) The inverted residual block with SE module after the 1 × 1 Conv. d) The SE
module. The down sampling will be in the DWConv layer. There is no shortcut connection if the sizes of input and output features are different. Conv:
Convolution layer. DWCon: Depthwise Convolution layer.

B. Mobile Inverted Bottleneck Convolution Block

The basic mobile inverted bottleneck convolution is ob-

tained through the neural network architecture search. The

module structure is similar to the depthwise separable con-

volution, as can be seen in Fig. 1a. The mobile inverted

bottleneck convolution first performs a 1 × 1 point-by-point

convolution on the input and based on the expansion ratio

(expand ratio) to change the output channel dimension (for

example, when the expansion ratio is 3, the channel dimension

will be increased by 3 times. But if the expansion ratio is

1, then directly omit the 1 × 1 point-by-point convolution

and subsequent batch normalization and activation functions).

Then proceed to the depthwise convolution of k × k. Then

restore the original channel dimension at the end of 1x1

point-by-point convolution. Finally, the drop connect and skip

connection of the input are performed.

When the SE module is attached, the operations will be

performed after the depthwise convolution k × k, as shown

in Fig. 1b. This architecture is default for EfficientNet-B0, as

well as the EfficientNet series.

This paper also investigates the performance of EfficientNet-

B0 when the SE module is moved behind the last 1 × 1
convolution layer. The architecture of this block is shown in

Fig. 1c.

IV. EXPERIMENTS

This paper evaluates the variants of EfficientNet-B0 on

ImageNet dataset [10] and compare them in term of Top-1

error.

A. Dataset

The ILSVRC 2012 classification dataset [10] consists 1.2
million images for training, and 50, 000 for validation, from

1, 000 classes. This paper adopts the same data augmentation

scheme for training images as in [15], and apply a single-crop

with size 224×224 at test time. Following [15], we report the

Top-1 classification errors on the validation set.

B. Implementation Details

This paper implements all variants of EfficientNet-B0 on

Tensorflow. The training procedure follows the schema pro-

posed in [15]. All models are trained using back-propagation

[6] by Stochastic Gradient Descent [9] with Nesterov mo-

mentum [8] (NAG) optimizer implemented by Tensorflow for

350 epochs. At the first 5 epochs, the learning rate increases

linearly from 0 to 0.4. Then, its value will be decayed with

a cosine shape (the learning rate of epoch t ≤ 300 is set to

0.5× lr×(cos(π× t/300)+1)). The parameters are initialized

by Xavier’s initializer [1]. The other settings are: weight decay

of 0.0001, momentum of 0.9, and batch size of 2048.

All networks were trained on Google Colab service with

TPU environment.

C. Performance Evaluation

Table II shows the comparison on Top-1 error of vari-

ants of EfficientNet-B0 when the SE modules are reposi-

tioned/removed.

It’s easy to see that if we do the change (re-positioning or

removing) on noskip blocks, the accuracy slightly drops with

just 0.1%. But if we do the same change on hasskip blocks,

the accuracy drops a little bit larger at 0.7%. If all blocks are

applied, the accuracy drops much at 1% and 1.4%.

One note here is if we reposition the SE modules on only

noskip-blocks or hasskip-blocks, the performance is similar to

the removing case. It means the affect of SE modules when

it’s at the end almost is absent. However, when the change is

applied to all blocks, the variant with SE blocks has higher

accuracy, 76.2% vs 75.8%. This shows that SE modules still



TABLE II
TOP-1 ERROR RATES (%) VARIANTS OF EFFICIENTNET ON IMAGENET DATASETS. RESULTS THAT OUTPERFORM ARE BOLD. SEend MEANS SE MODULES

ARE REPOSITIONED TO THE END OF MBCONV BLOCKS. noSE MEANS THERE IS NO SE MODULES INSIDE THE MBCONV BLOCKS. noskip MEANS THE

CHANGES ARE APPLIED TO MBCONV BLOCKS WHICH HAVE NO SKIP-CONNECTION. hasskip MEANS THE CHANGES ARE APPLIED TO MBCONV BLOCKS

WHICH HAVE SKIP-CONNECTION.

Model Block Arch. #Params Top-1 Top-5

EfficienNet-B0 Fig. 1b 5.29M 77.2 93.4

EfficienNet-B0-SEend@noskip

Fig. 1c
5.16M 77.1 93.3

EfficienNet-B0-SEend@hasskip 4.91M 76.5 93.2
EfficienNet-B0-SEend@all 4.78M 76.2 92.9

EfficienNet-B0-noSE@noskip

Fig. 1a
5.11M 77.1 93.4

EfficienNet-B0-noSE@hasskip 4.83M 76.6 93.0
EfficienNet-B0-noSE@all 4.65M 75.8 92.7

can improve the accuracy for EfficientNet-B0, but we don’t

need to use SE module for all MBConv blocks.

V. CONCLUSION

This paper investigate the effect of SE modules on the

performance of EfficientNet-B0, the basic network model in

the EfficientNets series, by repositioning/removing the SE

modules. The experiments show that repositioning SE module

to the end of block is not a good idea. And we don’t need

to use SE module for all MBConv blocks, there is a trade off

need to be further studied to have more efficient network.

In the future, it is necessary to modify the architecture of

EfficientNet and MBConv block to make them more efficient.

REFERENCES

[1] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the International

Conference on Artificial Intelligence and Statistics, 2010, pp. 249–256.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 770–778.

[3] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional
neural networks for mobile vision applications,” 2017, arXiv preprint
arXiv:1704.04861.

[4] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 7132–7141.

[5] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

[6] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551,
1989.

[7] M. Lin, Q. Chen, and S. Yan, “Network in network,” in Proceedings of

the International Conference on Learning Representations, 2014.

[8] Y. E. Nesterov, “A method for solving the convex programming problem
with convergence rate o (1/kˆ 2),” in Dokl. Akad. Nauk SSSR, vol. 269,
1983, pp. 543–547.

[9] H. Robbins and S. Monro, “A stochastic approximation method,” The

annals of mathematical statistics, pp. 400–407, 1951.

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” International

Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[11] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 1–9.
[13] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the inception architecture for computer vision,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2818–2826.

[14] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2019, pp. 2820–2828.
[15] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolu-

tional neural networks,” in Proceedings of the International Conference

on Machine Learning, 2019, pp. 6105–6114.
[16] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proceed-

ings of the British Machine Vision Conference, 2016.
[17] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-

cient convolutional neural network for mobile devices,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848–6856.

[18] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018, pp.
8697–8710.


