
A Lightweight One-Stage 3D Object Detector
Based on LiDAR and Camera Sensors

Li-Hua Wen and Kang-Hyun Jo
Intelligent Systems Laboratory, Department of Electrical, Electronic

and Computer Engineering, University of Ulsan, Ulsan 44610, Korea
wenlihua@islab.ulsan.ac.kr, acejo@ulsan.ac.kr

Abstract—Currently, many kinds of LiDAR-camera-based 3D
object detectors have been developed with two individual heavy
branches, one is used to extract features from LiDAR data,
and the other one is utilized to extract features from camera
data. In contrast, this paper proposes an early-fusion method
to exploit both LiDAR and camera data for fast 3D object
detection using only one backbone, achieving a good balance
between accuracy and efficiency. Massive experiments evaluated
on the KITTI benchmark suite show that the proposed approach
outperforms state-of-the-art LiDAR-camera-based methods on
the three classes. Additionally, the proposed model runs at 23
frames per second (FPS), which is almost 2× faster than state-
of-the-art fusion methods for LiDAR and camera.

Index Terms—LiDAR-camera-based 3D detector, single stage,
one backbone, point-wise fusion, KITTI benchmark

I. INTRODUCTION

With the rapid development of autonomous vehicles, three-
dimensional (3D) object detection has become more important,
whose purpose is to perceive the size and accurate location
of objects in the real world. Currently, an intelligent car is
equipped with at least one LiDAR apparatus, one radar and
one RGB camera. Note that radar is now widely used in
companies, however, only a few researchers use it to validate
a new algorithm. Hence, this paper focuses on LiDAR and
camera for 3D object detection. LiDAR is employed to collect
the surrounding 3D data, referred to as a point cloud, and
the camera is used to capture a high-resolution RGB image.
The two devices provide two important and different types
of data. However, it is non-trivial to highly efficiently and
quickly extract and fuse the features of the point cloud and
RGB image.

Recently, feature extraction with deep learning has drawn
much attention. For the RGB image, a general 2D convo-
lutional neural network (CNN) can be used to extract its
features. For the point cloud however, it is difficult to extract
its features due to its irregular distribution and sparse contribu-
tions. Before the advent of highly-efficient graphics processing
units (GPUs), representative studies [1]–[7] have converted
point clouds into 2D dense images or structured voxel-grid
representations and utilized 2D neural networks to extract the
corresponding feature from the converted 2D image. With the
development of computer technology, the authors in [8]–[11]
directly utilized a multi-layer perceptron (MLP) to aggregate
features from point clouds. Shi et al. [12] encoded the point
cloud natively in a graph using the points as the graph vertices.

To leverage the mutual advantages of point clouds and the
RGB image, some researchers have attempted to fuse view-
specific region of interest (ROI) features. Currently, there are
two mainstream fusion methods. The first is to fuse two view-
specific features. The other method is pointwise feature fusion.
Chen et al. [1] and Ku et al. [2] directly fuse the ROI feature
maps output with the two backbones of the point cloud and
RGB image, respectively. On the other hand, Xu et al. [13]
and Sindagi et al. [14] fuse pointwise features. These meth-
ods achieve better performance compared with LiDAR-based
methods; however, their inference time is usually intolerable
for application in real-time autonomous driving systems.

To deal with the above issues, this paper proposes a novel
point-wise fusion strategy between point clouds and RGB im-
ages. The proposed method directly extracts pointwise features
from the raw RGB image based on the raw point cloud first.
Then, it fuses the two pointwise features and feeds them into
a 3D neural network. The structure, as shown in Figure 1, has
only one backbone to extract features, making the proposed
model much faster than state-of-the-art LiDAR and camera
fusion methods.

The key contributions of this work are as follows:
• This paper presents an early-fusion method to exploit

both LiDAR and camera data for fast multi-class 3D
object detection with only one backbone, achieving a
good balance between accuracy and efficiency.

• This paper proposes a highly-efficient pointwise feature
fusion module, which directly extracts the RGB image
point feature based on a point cloud and fuses the ex-
tracted RGB image point feature with the corresponding
feature of the point cloud.

The presented one-stage 3D multi-class object detection
framework outperforms state-of-the-art LiDAR-camera-based
methods on the KITTI benchmark [15] both in terms of the
speed and accuracy.

II. PROPOSED APPROACH

The proposed model, as shown in Figure 1, takes point
clouds and RGB images as inputs and predicts oriented 3D
bounding boxes for cyclists, pedestrians, and cars. This model
includes four main parts: (1) A point feature fusion module
that extracts the point features from the RGB image and
fuses the extracted features with the corresponding point cloud
features, (2) a voxel feature encoder (VFE) module and a 3D

Point Transform Module

Voxelization

Raw Point Cloud

Point-wise Feature

Point-wise
Fusion

VFE
Module

3D Backbone

To Dense

BEV

3D
 B

ox
 P

re
di

ct
io

ns

Detection Head

Deconv.

Deconv.

Point Feature Fusion Module

RGB Image

Feature Maps

Image Backbone Detection Head

2D Object Detection

Figure 1: The architecture of the proposed one-stage 3D object detection network for the LiDAR and camera. It mainly includes
the input data, the point feature fusion module, the 3D backbone, the 2-D object detection and the detection head. The gray
box and green box represent the convolutional block and feature map, respectively.

backbone to process the fused pointwise features into a high-
level representation, (3) a detection head that regresses and
classifies the 3D bounding boxes, and (4) a loss function.

A. Point Feature Fusion Module

The fusion module, shown in Figure 2, consists of three
submodules: the point transform module, the voxelization of
point clouds, and the pointwise fusion module. Since this
module involves the input of raw data, before introducing the
module, the input data is first introduced.

𝐻 ×𝑊 × 3

Raw Point Cloud

𝑅𝐺𝐵ା Image

𝑁 × 4

Point Transform
Module

Transformation Matrix

Voxelization

𝑁 × 3
FC

FC

Fusion

𝑁 × 10

𝑁 × 128

𝑁 × 128

FC
𝑁 × 128

Figure 2: Visualization of the point feature fusion module. N
is the number of points in a point cloud, and FC denotes one
fully connected layer.

Input Data. This model accepts point clouds and RGB images
as the input. To reduce the loss of raw point-cloud information
during voxelization, a LiDAR point cloud is projected onto an
RGB image and embedded into the image to generate a new
image with three channels, called RGB+. The RGB+ object has
two typical representations: the RGBI portion that embeds the
intensity of point clouds into an RGB image, and the RGBD

representation that embeds the Z-axis value of point clouds
into the image [6], [7].
Point Transform Module. This module extracts point features
from the RGB+ image I ∈ RH×W×3 based on the raw point

cloud. First, a point cloud P ∈ RN×3 is projected onto its
corresponding image by Eq. 1 to obtain the corresponding
image coordinates (ui, vi). Second, the RGB+ and the (ui, vi)
are fed into the image sampler [16], outputting the image point
feature Pi ∈ RN×3, where N is the number of points in the
point cloud.

(
u v 1

)T
= M ·

(
X Y Z 1

)T
, (1)

Voxelization. Voxelization divides the point cloud into evenly
spaced voxel grids and then generates a many-to-one mapping
between 3D points and their corresponding voxels. Currently,
there exist two voxelization methods: hard voxelization [3],
[17], [18] and dynamic voxelization [19]. Compared with
the former, dynamic voxelization makes the detection more
stable by preserving all the raw points and voxel information.
This work applies the dynamic voxelization method. Given a
point cloud P = {p1,p2, · · · ,pN}, the process assigns N
points to a buffer of size N × F , where N is the number of
points and F denotes the feature dimension. Specifically, each
point pi = [xi, yi, zi, ri] (containing the XYZ coordinates and
the reflectance value) in a voxel is denoted by its inherent
information (xi, yi, zi, ri), its relative offsets (xv, yv, zv) with
respect to the centroid of the points in the voxel, and its
relative offsets (xp, yp, zp) with respect to the centroid of the
points in the pillar. Finally, the output point-wise feature is
Pv ∈ RN×10, and the resulting size of the 3D voxel grid
is
(
W
sy
, Hsx ,

D
sz

)
, where (sy, sx, sz) gives the voxel sizes, and

(W,H,D) are the ranges along the Y-axis, X-axis, Z-axis,
respectively.
Point-wise Fusion. This module fuses the pointwise features
Pi and Pv. Since the dimensions of the two features are
different, two fully connected (FC), one for each feature, are
used to adjust their dimensions to be the same. There are two
common fusion methods for ROIs: addition and concatenation.
Therefore, this paper will analyze which fusion method is the
most suitable for the pointwise features in Table II in the

ablation section. After the fusion operation, one FC layer is
utilized to further merge the fused features and output the
result as Pf .

B. Voxel Feature Encoder Module and 3D Backbone

This section introduces the voxel feature encoder module
and the 3D backbone, in that order.
Voxel Feature Encoder Module. Upon completing the point-
wise fusion, the fused feature Pf is transformed through the
VFE layer which is composed of a fully connected network
(FCN), into a feature space, where information from the point
features fi ∈ Rm can be aggregated to encode the shape of
the surface contained within the voxel [3], [17], [18], where
i ∈ [1, N] and m is the feature dimension of a point. The FCN
consists of a linear layer followed by a batch normalization
layer, and a ReLU layer. An elementwise max-pooling process
is used to locally aggregate the transformed features and
output a feature ~f for Pf . Finally, the max-pooled feature ~f is
concatenated with each point feature fi to generate the final
feature Pvfe. his work stacks two such VFE layers and both
of the output lengths are 128. This means the shape of Pvfe

is N × 128.
3D Backbone. The 3D backbone takes the feature Pvfe

and it’s corresponding index of 3D coordinates (X,Y,Z) as
inputs. The backbone is widely used in [20], [21] and has
twelve 3D sparse convolutional layers and is divided into four
stages according to feature resolution. The four-stage feature
resolutions in the order of (W,H,D) are (1600, 1408, 41),
(800, 704, 21), (400, 352, 11), and (200, 176, 2). Specifically,
each stage has two kinds of 3D convolutional layers: the
submanifold convolution [17] and the sparse convolution.
The former does not generate new points and shares the
point coordinate indices in each stage; hence, the submanifold
convolution runs very fast. The latter is a sparse version of
the dense 3D convolution. Usually, these two convolutions are
used in conjunction to achieve the speed/accuracy balance. The
sparse feature map after the 3D sparse convolution needs to
be converted into the dense feature map Fd ∈ R200×176×256.

C. Detection Head

The input data of the detection head is the dense feature
map Fd. The detection head is comprised of three convolution
blocks. Block 1 has five 2D convolutional layers and outputs
the feature map F1 ∈ R100×88×128. Similarly, block 2 also
has five 2D convolutional layers and takes the feature map F1

as input and outputs the feature map F2 ∈ R50×44×256. Block
3 has two transpose layers and one 2D convolutional layer. F1

and F2 are transposed as the feature map F3 ∈ R100×88×256

and the feature map F4 ∈ R100×88×256, respectively. Fi-
nally, the feature maps F3 and F4 are concatenated as
the feature map F ∈ R100×88×512. The feature map F is
mapped to three desired learning targets: (1) a classification
score map Fscore ∈ R100×88×18, (2) a box regression map
Fbox ∈ R100×88×42, and (3) a direction regression map
Fdir ∈ R100×88×12.

D. Loss Function

This work utilizes the same loss functions in PointPillars
[18] and SECOND [17]. The 3D ground truth boxes and
anchors are parameterized as (x, y, z, l, w, h, θ), where (x, y, z)
denote the box’s center, (l, w, h) represent the box’s size, and
θ is the yaw rotation around the Z-axis. The corresponding
regression residuals between the 3D anchors and ground truth
are defined as follows:

∆x =
xg − xa

da
, ∆y =

yg − ya

da
,

∆z =
zg − za

ha
, ∆l = log

(
l(g)

l(a)

)
,

∆w = log

(
w(g)

w(a)

)
, ∆h = log(

hg

ha
),

∆θ = sin(θg − θa),

(2)

where the superscripts g and a represent the ground truth
box and the anchor, respectively. The variable da =√

(wa)2 + (la)2 is the diagonal of the base of the anchor box.
The regression loss function is as follows:

Lreg =
∑
b

SmoothL1(∆b), (3)

where the input dimensions are b ∈ (x, y, z, w, l, h, θ) and
SmoothL1 is the smooth L1 loss function in the Fast R-CNN
module.

Since the yaw angle θ ∈ [−Π,Π] has two directions
{+,−}, and the angle regression loss cannot distinguish the
directions. A softmax classification loss is utilized to compute
the discretized direction loss [17], Ldir. If the yaw angle θ
around the Z-axis of the ground truth is greater than zero, the
direction is positive; otherwise, the direction is negative.

For the object classification loss, the focal loss [22] is used:

Lcls = −αa(1− pa)γ log(pa), (4)

where pa is the class probability of an anchor, α = 0.25, and
γ = 2. The total loss can be formulated as follows:

Loss =
1

Npos
(β1Lbox + β2Lcls + β3Ldir), (5)

where Npos is the number of positive anchors and β1 = 2.0,
β2 = 1.0, and β3 = 0.2. For the car class, an anchor
is defined as positive if it has a 2D IoU greater than 0.60
(pedestrian/cyclist is 0.35) with its paired ground truth. If it
has a 2D IoU less than 0.45 (pedestrian/cyclist is 0.2), the
anchor is labeled as negative. The other anchors are ignored
when computing the loss.

III. EXPERIMENTS

A. Dataset

The proposed model is trained and evaluated on the KITTI
dataset [15]. The KITTI object dataset possesses 7,518 testing
frames and 7,481 training frames. Each frame is comprised
of a point cloud, stereo RGB images (the left image and
the right image), and calibration data. In this research, only
a point cloud and the left image with their calibration data

Table I: Performance comparison using the KITTI testing dataset. The results of cars are evaluated by the mean Average
Precision with 40 recall positions. The top performance is highlighted in bold only for the mAP columns and FPS column,
and the second-best is shown in blue.

Method FPS APBEV (IoU = 0.7) AP3D (IoU = 0.7) AP2D(IoU = 0.7)
Easy Moderate Hard mAP Easy Moderate Hard mAP Easy Moderate Hard mAP

MV3D [1] 2.8 86.00 76.90 68.50 77.13 71.10 62.40 55.10 62.87 96.47 90.83 78.63 88.64
F-PointNet [23] 5.9 88.70 84.00 75.30 82.67 81.20 70.40 62.20 71.27 95.85 95.17 85.42 92.15

AVOD [2] 12.5 86.80 85.40 77.70 83.30 73.60 65.80 58.40 65.93 95.17 89.88 82.83 89.29
AVOD-FPN [2] 10.0 88.50 83.80 77.90 83.40 81.90 71.90 66.40 73.40 94.70 88.92 84.13 89.25

ContFusion [24] 16.7 94.07 85.35 75.88 85.10 83.68 68.78 61.67 71.38 - - - -
MVX-Net [14] 6.7 89.20 85.90 78.10 84.40 83.20 72.70 65.20 73.70 - - - -

PFF3D [7] 18.5 89.61 85.08 80.42 85.04 81.11 72.93 67.24 73.76 95.37 92.15 87.54 91.69
Proposed 23 90.05 86.14 80.91 85.70 83.96 73.83 68.19 75.33 95.97 93.30 88.75 92.67

Table II: Effect of the point feature fusion module. The results are from the ’Moderate’ difficulty category. The best result is
highlighted in bold for each column.

Method Cars (%) Pedestrians (%) Cyclists (%)
Addition Concatenation FC PA [25] 2D AOS BEV 3D 2D AOS BEV 3D 2D AOS BEV 3D

89.27 88.72 85.04 77.00 70.69 33.91 62.74 56.20 64.13 59.55 59.19 55.71√
89.74 89.39 85.84 76.60 70.26 56.75 62.80 57.65 64.64 58.40 61.34 59.72√
89.54 85.84 86.14 77.01 69.99 56.59 62.71 57.74 65.19 62.08 61.74 60.51√ √
89.72 89.29 86.97 77.60 71.87 60.20 64.22 60.16 67.21 63.95 63.50 60.07√ √
89.70 89.27 86.27 77.12 69.51 58.02 65.89 59.74 64.74 61.50 60.87 59.37√ √
89.76 89.23 86.05 76.32 72.23 53.15 67.89 60.18 65.18 60.50 60.50 60.60

are used. To impartially compare the proposed approach with
existing methods, the training dataset is divided into two
subsets (training subset and validation subset) based on the
same criteria, and the ratio of the two subsets is 1:1.

B. Experimental Settings

The proposed model is an end-to-end 3D detector for
three classes: the car, pedestrian, and cyclist. When de-
signing the anchors for the three classes, different classes
employ different sizes (w, l, h). The sizes (1.6, 3.9, 1.56),
(0.6, 0.8, 1.73), and (0.6, 1.76, 1.73) are for the car, the pedes-
trian, and the cyclist, respectively. Note that each anchor
has two directions {0◦, 90◦}, which means that each location
has six anchors. The detection area in the point cloud is
{(x, y, z) | x ∈ [0, 70.4] , y ∈ [−40, 40] , z ∈ [−3, 1]}.

The framework is based on Pytorch and programmed by the
python language. This model is trained from scratch based on
Adam optimizer. The whole network is trained with a batch
of size 10 and the initial learning rate is 0.003 for 80 epochs
on one TITAN RTX GPU. This work also adopts the cosine
annealing learning rate for the learning rate decay. The entire
training time is around 12 hours.

For data augmentation, this work employs the widely used
augmentations found in [7], [19], [20], including global scaling
[0.95, 1.05], global rotation around the Z-axis [−45◦, 45◦], and
the random flipping along the X-axis.

C. Results

The proposed model is also evaluated using the more
challenging dataset: the KITTI testing dataset. In Table I, this
part only compares the proposed method with state-of-the-art
methods in three aspects: BEV, 3D, and 2D. Since it requires
a great deal of data to compare these three performances, here,
the results are simply compared based on the mean average

precision (mAP). For the 3D performance, the proposed model
has the best performance. For the BEV and 2D performances,
the proposed method is the second-best, but the overall per-
formance of the proposed method outperforms state-of-the-art
methods when taking accuracy and speed into account. The
results of the proposed method can be retrieved on the KITTI
website based on the name of the proposed method, PFF3D.

IV. ABLATION STUDIES

This section analyzes the proposed methods individually by
conducting ablation experiments using the KITTI validation
dataset.

1) Effect of the Point Feature Fusion Module: This section
analyzes the point feature fusion module based on the three
classes in detail. In Table II, the ’Addition’ and ’Concatena-
tion’ represent the respective addition and concatenation fusion
methods. The parameter’FC’ means the fully connected layer
followed after the fusion operation, as shown in Figure 2.
The experimental results show that the combination of the
addition operation and FC of the proposed module is best for
the three classes: the car, pedestrian, and cyclist. The data in
the first row give the results of the proposed method when only
taking a point cloud as input. Compared with the LiDAR-based
method (the first row), the proposed method (the fourth row)
achieves 0.45%, 0.57%, 1.83%, and 0.6% gains in the 2D,
AOS, BEV, and 3D performance, respectively. Compared with
the performance improvement of cars, the proposed model is
more helpful for improving the identification of pedestrians
and cyclists. Additionally, we integrate the pointwise attention
(PA) module proposed by Huang et al. [25] into our point
feature fusion module. In Table II, our method is better than
the PA module.

Figure 3: Qualitative results of the proposed method using the KITTI validation dataset. In the RGB images, the red, cyan,
and yellow color represent the predictions for the car, pedestrian, cyclist, respectively. In the point cloud images, the green
color denotes the ground truth, and the red color represents the prediction. The results in the point cloud images are used for
a qualitative comparison.

Table III: Effect of the proposed framework. The ’Time’
column denotes the training time and the ’Memory’ is the
memory needed when the model is run for four batch sizes.
The ’Rtime’ column denotes the runtime. ’R’ and ’V1’ repre-
sent ResNet and ResNetV1d, respectively. ’2D Image Branch’
denotes that if the model use a full 2D image detection branch.
The results of the cars are in the ’Moderate’ difficulty category
for the BEV and 3D.

2D Image
Branch Method Time

(hour)
Memory

(MB)
Rtime
(FPS)

BEV
(%)

3D
(%)

Yes

R101 28.0 19,500 9.5 85.95 76.82
R50 23.5 12,550 11.0 86.29 76.92

V1-50 25.0 12,700 10.6 85.51 76.48
VGG11 16 11900 12.0 85.96 76.44

No Ours 11.5 4200 18.0 86.17 76.93

2) Effect of the Proposed Framework: The proposed 3D
object detection framework is the first to directly project the

raw RGB point features to a point cloud, as shown in Figure
2. The proposed approach is not without precedent but was
discovered through experiments. Inspired by MVX-Net [14],
we simply wanted to implement a lightweight design based on
two backbones. One backbone was intended for 2D detection
and the other one for 3D detection. First, ResNet-101 [26] was
chosen as the backbone to extract features from RGB images.
The results were as expected but the testing model ran very
slowly. Then, ResNet-101 was replaced by ResNet-50 [26],
and the model ran a little faster but the accuracy was almost the
same. When using ResNetV1d-50 [27], the result was almost
the same as the result for ResNet-50 [26]. These results are
thought-provoking. Hence, we boldly propose to map the raw
point features of the RGB image to the point cloud without
the 2D detection branch. The experimental results in Table 5
demonstrate that the proposed method is feasible. As can be
seen in Table III, the proposed approach not only drastically
reduces the memory requirements for model operation, but

also reduces the time of model training by half. It can be said
that the proposed framework is lightweight, memory-saving,
and energy-saving.

Figure 3 presents some qualitative results. As can be seen
in the figures, each object can be detected by the proposed
model and the predicted bounding boxes are well-matched
with their corresponding ground truth boxes. Even in very
complex scenes, the proposed model can detect objects quite
well, as shown in the last two rows of Figure 3.

V. CONCLUSION

This paper is the first to propose a lightweight, memory-
saving, and energy-saving framework for 3D object detection
based on LiDAR and an RGB camera. Different from the
existing frameworks, the proposed framework only employs
one backbone to extract features from a point cloud and RGB
image. The framework benefits from the proposed module, i.e.,
the point feature fusion module. The fusion module directly
extracts the point features of RGB images and fuses them
with the corresponding point cloud features. The experimental
results using both the KITTI validation dataset and testing
dataset demonstrate that the proposed method significantly
improves the speed (23 FPS) of LiDAR-camera-based 3D ob-
ject detection compared with other state-of-the-art approaches.
Note that the proposed native model can achieve an inferring
speed 23 FPS.

In the future, the proposed method will be directly used in
the point-based methods [10], thereby achieving breakthroughs
in both accuracy and speed.

REFERENCES

[1] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6526–
6534.

[2] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint
3d proposal generation and object detection from view aggregation,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2018, pp. 1–8.

[3] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4490–4499.

[4] L. Wen and K.-H. Jo, “Fully convolutional neural networks for 3d
vehicle detection based on point clouds,” in Intelligent Computing
Theories and Application. Cham: Springer International Publishing,
2019, pp. 592–601.

[5] L. Wen and J. Kang-Hyun, “Lidar-camera-based deep dense fusion for
robust 3d object detection,” in Intelligent Computing Methodologies.
Cham: Springer International Publishing, 2020, pp. 133–144.

[6] L.-H. Wen and K.-H. Jo, “Three-attention mechanisms for one-stage
3d object detection based on lidar and camera,” IEEE Transactions on
Industrial Informatics, pp. 1–1, 2021.

[7] L. H. Wen and K. H. Jo, “Fast and accurate 3d object detection for
lidar-camera-based autonomous vehicles using one shared voxel-based
backbone,” IEEE Access, vol. 9, pp. 22 080–22 089, 2021.

[8] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “Pointnet: Deep
learning on point sets for 3d classification and segmentation,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 77–85.

[9] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in Neural
Information Processing Systems 30, 2017, pp. 5099–5108.

[10] Z. Yang, Y. Sun, S. Liu, and J. Jia, “3dssd: Point-based 3d single stage
object detector,” in 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020, pp. 11 037–11 045.

[11] L. Wen, X. T. Vo, and K.-H. Jo, “3d saccadenet: A single-shot 3d object
detector for lidar point clouds,” in 2020 20th International Conference
on Control, Automation and Systems (ICCAS), 2020, pp. 1225–1230.

[12] W. Shi and R. Rajkumar, “Point-gnn: Graph neural network for 3d object
detection in a point cloud,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 1708–1716.

[13] D. Xu, D. Anguelov, and A. Jain, “Pointfusion: Deep sensor fusion
for 3d bounding box estimation,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018, pp. 244–253.

[14] V. A. Sindagi, Y. Zhou, and O. Tuzel, “Mvx-net: Multimodal voxelnet
for 3d object detection,” in 2019 International Conference on Robotics
and Automation (ICRA), 2019, pp. 7276–7282.

[15] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition, 2012, pp. 3354–3361.

[16] M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu, “Spatial
transformer networks,” in Advances in Neural Information Processing
Systems, vol. 28, 2015, pp. 2017–2025.

[17] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, Oct 2018.

[18] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019, pp. 12 689–12 697.

[19] Y. Zhou, P. Sun, Y. Zhang, D. Anguelov, J. Gao, T. Ouyang, J. Guo,
J. Ngiam, and V. Vasudevan, “End-to-end multi-view fusion for 3d object
detection in lidar point clouds,” in Proceedings of the Conference on
Robot Learning, ser. Proceedings of Machine Learning Research, vol.
100, 30 Oct–01 Nov 2020, pp. 923–932.

[20] C. He, H. Zeng, J. Huang, X. S. Hua, and L. Zhang, “Structure aware
single-stage 3d object detection from point cloud,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 11 870–11 879.

[21] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-
rcnn: Point-voxel feature set abstraction for 3d object detection,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 10 526–10 535.

[22] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense
object detection,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 42, no. 2, pp. 318–327, 2020.

[23] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets
for 3d object detection from rgb-d data,” in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018, pp. 918–927.

[24] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous fusion
for multi-sensor 3d object detection,” in Computer Vision – ECCV 2018.
Cham: Springer International Publishing, 2018, pp. 663–678.

[25] T. Huang, Z. Liu, X. Chen, and X. Bai, “Epnet: Enhancing point features
with image semantics for 3d object detection,” in Computer Vision –
ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds.
Cham: Springer International Publishing, 2020, pp. 35–52.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep
residual networks,” in Computer Vision – ECCV 2016. Cham: Springer
International Publishing, 2016, pp. 630–645.

	Introduction
	Proposed Approach
	Point Feature Fusion Module
	Voxel Feature Encoder Module and 3D Backbone
	Detection Head
	Loss Function

	Experiments
	Dataset
	Experimental Settings
	Results

	Ablation Studies
	Effect of the Point Feature Fusion Module
	Effect of the Proposed Framework

	Conclusion
	References

