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Abstract. Feature Pyramid Networks have solved scale variation prob-
lems in object detection by developing multi-level features with different
scales from backbone networks. Although this network achieved promis-
ing performance without affecting model complexity, they still suffer
feature-level imbalance between multi-level features, i.e., low-level fea-
tures and high-level features in each stage of the backbone. Moreover,
the detection head predicts classification scores and offset regression in-
dependently on each feature of multi-level features, which leads to in-
consistency among the detection branch. Hence, this paper releases this
problem by introducing simple but effective Stair-step Feature Pyramid
Networks (SFPN) to harmonize information between multi-level features.
Further, the Offset Adaption Module (OA Module) is proposed to im-
prove feature representation by adapting the feature of the classification
branch with regressed offsets of the regression branch. On the MS-COCO
dataset, the proposed method increases by 1.2% Average Precision when
comparing with baseline FCOS without bells and whistles.
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1 Introduction

Object detection is one of the challenging tasks in computer vision research.
This problem is decomposed into two tasks: classification task and regression
task. The classification task classifies each object belonging to a specific class.
The regression task identifies where each object locates. Two types of detec-
tors are one-stage and two-stage detector, which are based on the number of
networks on each detection head. The two-stage pipeline first obtains a set of
region proposals and then the second stage classifies each proposal to a spe-
cific class and regresses the coordinates of each proposal by learning offsets. The
one-stage object detection directly places dense anchor-boxes on each location
and performs classification and regression tasks on each anchor-boxes. Although
one-stage detection achieves high efficiency, the accuracy of it is far lower than
two-stage detection. The structure of detection architecture includes a backbone
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network to extract feature of images, neck network which connects the back-
bone and head part to create multi-level features and detection head to predict
classification scores and offsets.

One of the most popular necks is Feature Pyramid Networks - FPN [9] select-
ing multi-level features from backbone network by utilizing top-down pathway
and lateral connection to gather neighborhood features. Even though FPN has
figured out the scale imbalance problem in which the size of objects changes
in large ranges, this method still suffers feature-level imbalance among multi-
level features. Since the detection head predicts scores, offsets independently on
each feature, it leads to inconsistency between each head branch. To overcome
this problem, EFPN [16] introduced a feature aggregation module and refine-
ment module to obtain a uniform feature for all feature pyramid. Inspired by
[16], this paper proposes Stair-step Feature Pyramid Networks (SFPN) which
employs bi-linear interpolation and summation operation on adjacent features
to form a uniform feature, i.e., the top-down pathway. Generally speaking, the
multi-level features are converted to a single feature that contains information
of all features. Without losing the novelty of FPN, SFPN also creates multi-level
features by down-sampling a uniform feature, i.e., bottom-top pathway. Finally,
the residual connection between the top-down pathway and down-top pathway
is applied to ease hard optimization.

The detection head consists of the classification and regression branch. These
two branches are trained independently to predict the class probability and off-
set values. Hence they ignore the correlation of class prediction and bounding
box prediction. To improve feature representation, the Offset Adaption Module
(OA Module) is performed by adding four offset values to the rectangular grid
sampling locations in 3×3 convolution.

2 Related Work

Feature Pyramid Networks - FPN [9] presented multi-level features to solve scale
variation problems in object detection. EFPN [16] enhanced multi-scale features
by introducing feature aggregation module and refinement module to improve
feature representation.

The popular two-stage object detection is Faster R-CNN [13] which achieves
great performance. Inspired by [13], many methods are proposed such as Libra
R-CNN [12], TridentNet [8], Mask R-CNN [4]. The one-stage object detection
brings a trade-off between accuracy and speed. One of the most popular one-
stage detection is RetinaNet [10] which densely places anchor-boxes on each
location. After that, the network classifies each anchor-box and predict four
offset value, e.g., coordinates of object center, width, and height. Recently, the
anchor-free method - FCOS [15] balances both accuracy and speed, which avoids
drawbacks of the anchor-based method. The proposed method considers FCOS
as a baseline.

Many methods aims to improve object detection accuracy by inserting atten-
tion module to backbone network, such as GCNet [1], Non-local Network [18],
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BNLNet [17]. Different from this strategy, this paper proposes the Offset Adap-
tion Module which correlates class prediction with bounding box prediction. This
module is light-weight but boosting the accuracy of detectors.

3 The Proposed Method

The overall architecture is shown in figure 1. The backbone network extracts
features from the image. Five feature maps with different scales from each stage
of the backbone are selected as the input of Stair-step FPN. This architecture
will describe in section 3.1.
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Fig. 1. The overall architecture of the proposed method includes the backbone, neck,
and detection head. Stair-step FPN takes five feature maps (P1, P2, P3, P4, P5) as
input and then obtains balanced features (E1, E2, E3, E4, E5). Offset Adaption OA
Module takes four offset values and classification features as input.

⊗
denotes 3×3

deformable convolution.

The detection head consists of the classification branch and regression branch.
The OA module considers the correlation of classification scores and bounding
box prediction, described in section 3.2.

3.1 Stair-step Feature Pyramid Networks

Inspired by FPN [9], Stair-step FPN employs lateral connection using 1×1 conv
and bi-linear interpolation to gather low-level and high-level features. Specifi-
cally, Stair-step FPN takes (P1, P2, P3, P4, P5) as input. Because the number
of channels and spatial resolution of each Pi is different. Therefore, 1×1 conv
reduces the number of channels of the down feature suitable for summation op-
eration with the top feature. Bi-linear interpolation up-samples the top feature
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to the same size as the down feature. The output of this process produces a
feature pyramid (C1, C2, C3, C4, C5). The detailed network is shown in figure
2.
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Fig. 2. The detailed architecture of the Stair-step FPN includes a top-down pathway
and a down-top pathway. Up 2× denotes Up-sampling operation with scale 2. Down
2× denotes Down-sampling operation with scale 2.

⊕
denotes summation operation.

To model a uniform feature, the Stair-step FPN utilizes a top-down pathway
to sum the up-sampled feature Ci+1 with Ci steadily. Hence, multi-level features
with different scales are fused to form a single feature. Then, 1×1 convolution
enhances a uniform feature across all channels.

Similar to the top-down pathway, the Stair-step FPN uses the down-top path-
way to create multi-level features. The enhanced feature is down-sampling two
times by max-pooling operation. The residual connection is applied to improve
feature representation by adding a feature in the top-down pathway with a fea-
ture in the down-top pathway correspondingly with the same spatial resolution
and number of channels. Additionally, the short-cut connection is able to solve
hard optimization when propagating gradient to the top-down pathway. Finally,
the stair-step FPN outputs balanced multi-level features with different scales
(E1, E2, E3, E4, E5) to solve scale imbalance in object detection.

3.2 Offset Adaption

The standard convolution layers perform on fixed rectangular grid sampling.
Therefore, the receptive field is not adaptive with scales or shapes of objects.
Also, the feature of the classification branch can lose to adapt with the feature
of the regression branch. To overcome this problem, the Offset Adaption (OA)
Module is proposed to adapt the classification feature with regressed offset val-
ues, which enhances feature representation. The detailed information is shown
in figure 1.

Different from standard convolution, deformable convolution [3] adds offset to
rectangular grid sampling location. Hence, this strategy can change the receptive
field adaptive with scales or shapes of objects. The OA module applies this
operation for adapting classification features with four regressed offset values,
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i.e., four distances (∆t, ∆b, ∆l, ∆r). The input of the OA module is the feature
of the classification branch and distance offsets of the regression branch. The
distance offsets estimate the filter offset ∆pl ∈ {∆t,∆b,∆l,∆r} which changes
rectangular grid sampling location L in deformable convolution operation. The
adapted feature y(p0) at location p0 is calculated as follows:

y(p0) =
∑
pl∈L

w(pl) ∗ x(p0 + pl +∆pl) (1)

where x is the feature map of classification, pl is the original location kernel
weight w(pl) in grid L.

4 Experiment Setup

The Stair-step FPN and OA module are measured on challenging benchmark
MS-COCO 2017 [11] for the object detection task. MS-COCO dataset consists
of 115k images for training, 5k validation images for selecting the best hyper-
parameters, and 20k images for testing. Because the annotation of the test set
did not provide, the result is measured by the CodaLab system. To evaluate the
performance, Average Precision (AP) and Average Recall (AR) are applied.

All experiments are conducted with the deep learning Pytorch framework.
The parameters of the baseline FCOS [15] is set by following the standard config-
uration of the mmdetection [2] with 12 epochs. The integrated model is trained
with a batch size of 8 on an NVIDIA Titan GPU, CUDA 10.2, and CuDNN
7.6.5. The initial learning rate is 0.00251 from 1st epochs to 8th epochs. It will
decay by a factor of 10 at 9th epochs and 10th epochs. The input image is resized
to 1333×800.

Table 1. Results on the validation set 2017.

Method Backbone Image size Schedule AP AP 50 AP 75 APS APM APL

Faster R-CNN [13] ResNet-50 1333×800 1× 37.4 58.1 40.4 21.1 41 48.1
Mask R-CNN [4] ResNet-50 1333×800 1× 38.2 58.8 41.4 21.9 40.9 49.5

GC-Net [1] ResNet-50 1333×800 1× 39.9 61.3 43.5 24.3 43.7 51.5
RetinaNet [10] ResNet-50 1333×800 1× 36.5 55.4 39.1 20.4 40.3 48.1
FoveaBox [6] ResNet-50 1333×800 1× 36.5 56.0 38.6 20.5 39.9 47.7

Free-Anchor [19] ResNet-50 1333×800 1× 38.7 57.3 41.5 21.0 42.0 51.3
GHM [7] ResNet-50 1333×800 1× 37.0 55.5 39.2 20.4 40.3 49.1
FCOS [15] ResNet-50 1333×800 1× 36.6 55.7 38.8 20.7 40.1 47.4

Ours ResNet-50 1333×800 1× 37.8 55.9 38.8 21.0 40.3 50.1
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5 Results

Comparison with state-of-the-art. The FPN in baseline FCOS is replaced
by the proposed Stair-step FPN. The pre-trained backbone ResNet [5] is trained
on ImageNet [14]. The results are evaluated on MS-COCO validation set with
5k images and compared with the state-of-the-art object detectors in Tab. 1. All
experiments use backbone ResNet-50 and the learning schedule is 1× denoting
12 epochs.

Fig. 3. The qualitative results of the proposed method on MS-COCO validation set.

The proposed method achieves 37.8 AP, which increases 1.2% higher AP
than FCOS [15] with the same backbone and learning schedule without bells
and whistles. Furthermore, the proposed method has surpassed most object de-
tectors, e.g., AP of Faster R-CNN [13] with ResNet-50 is 37.4, AP of RetinaNet
[10] is 36.5, AP of FoveaBox [6] is 36.5, AP of GHM [7] is 37.0. The performance
on the validation set pointed out that the Stair-step FPN and OA module are
boosted the accuracy of detectors by a large margin. These results demonstrate
the efficiency of the proposed method. Fig. 3 visualizes the qualitative results of
the proposed method on the MS-COCO validation set with different classes.

Ablation study. This work individually investigates the importance of each
component, i.e., the Stair-step FPN and OA module. When the detector uses
the Stair-step FPN in the neck part, the proposed method achieves 37.2 AP that
obtains an absolute gain of 0.6% AP comparing with baseline. The OA module is
able to improve the feature representation by adapting classification prediction
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Table 2. The effect of each component in the detector. Results are measured on the
validation set.

Stair-step FPN OA Module AP AP 50 AP 75 APS APM APL

36.6 55.7 38.8 20.7 40.1 47.4
X 37.2 55.6 38.6 20.9 40.3 48.3

X 37.4 55.7 38.9 21.2 40.1 49.6
X X 37.8 55.9 38.8 21.0 40.3 50.1

with regressed offsets. Hence, the results demonstrate the effectiveness of the
OA module, shown in figure 2. Specifically, the OA module boosts the accuracy
by 0.8% AP comparing with baseline. Finally, the detector utilizing all proposed
methods increases the accuracy by 1.2% AP, compared to the baseline.

6 Conclusion

This paper proposes the simple but effective Stair-step Feature Pyramid Net-
works solving feature-level imbalance and scale variation problem in object detec-
tion. The Stair-step FPN employs the top-down pathway to harmonize feature-
levels of multi-level features with different scales from outputs of the backbone
network into a uniform feature and down-top pathway to create multi-level fea-
tures. To better correlate classification prediction with regression branch, the
novel Offset Adaption module is introduced to align classification features with
four distance offsets by using deformable convolution. The experiments on the
MS-COCO dataset confirm the improvement of the proposed methods, achieving
state-of-the-art object detection.
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