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Abstract. The deep learning method has achieved great success in
saliency prediction task. Like depth and depth, the attention mecha-
nism has been proved to be effective in enhancing the performance of
Convolutional Neural Network (CNNs) in many studies. In this paper,
we propose a new architecture that combines encoder-decoder architec-
ture, multi-level integration, relation-aware global attention module. The
encoder-decoder architecture is the main structure to extract deeper fea-
tures. The multi-level integration constructs an asymmetric path that
avoid information loss. The Relation-aware Global Attention module is
used to enhance the network both channel-wise and spatial-wise. The
architecture is trained and tested on SALICON 2017 benchmark and
obtain competitive results compared with related research.
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1 Introduction

Saliency prediction is a very basic research field in computer vision but can be
used in many other tasks like object recognition [1], tracking regions of interest
[2], image retargeting [3] and so on. For human visual attention, we would pick
the most interesting region in your mind the first time when we see a scene.
Then our attention will be distracted and begin to notice other things that
are more subtle and detailed. These operations effectively help humans focus
limited attention on key information, save visual resources, and obtain the most
significant information quickly.

For the saliency prediction task, it describes the spatial location of an image
that attracts the observer most. For traditional saliency prediction, some low-
level features such as color, texture, and semantic concepts. Obviously, these
kinds of methods cannot achieve satisfactory performance. With the development
of CNNs, saliency prediction task can also use deep learning method to train
complicated models thanks to generous data-driven methods and large scale
annotated datasets [4]. And many works [5] achieved great results in saliency
prediction tasks.
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To extract deep feature and high-level semantic information, this paper con-
structs an encoder-decoder architecture to do feature extraction. For enhancing
the robustness of the network and avoid information loss by pooling operations in
CNNs, and U-Net [6] like architecture, we called multi-level integration is used.
Recently, many works resort to attention mechanism and surely obtain better
results. In this paper, we propose a new architecture that combines encoder-
decoder architecture, multi-level integration, and relation-aware global attention
(RGA) module which proposed by [7]. In the paper [7], they proved that both
channel-wise relation-aware global attention (RGA-C) module and spatial-wise
relation-aware global attention (RGA-S) module improve the performance of the
baseline network. As shown in their visualization results we can surely find that
the attention mechanism makes the network pay more attention to the discrimi-
native features part. In this paper, we combine the RGA-SC (sequential spatial-
channel) module in encoder-decoder architecture and successfully improve the
performance of the baseline.

To prove the effectiveness of the architecture proposed by this paper, we
compared with [8] which proposed similar architecture with this paper. In [8],
the self-attention module is used to enhance the global relation of the final
convolutional layer of the encoder. Compared with [8], the experimental results
show that using the RGA-SC module could effectively predict the saliency map.

The remaining content is organized as follows. Section 2 summarized the
related work. The details of each component in the whole architecture and the
loss functions used are introduced in Sect. 3. Section 4 provides the details and
results of the experiments. Finally, Sect. 5 concludes the paper.

2 Related Work

The traditional methods of saliency prediction task focus on low-level features.
Far-reaching work by Itti [9] relied on color, intensity, and orientation maps, and
then using Gabor filter to integrate the features to get global saliency feature
map. Bruce [10] use low-level local features in combination with information-
theoretic ideas. Borji [11] combined low-level features of previous best bottom-
up models with top-down cognitive visual features and learn a direct mapping
from those features to human eye fixations.

With the continuous development of deep learning techniques and large-
scale datasets, the performance of saliency prediction is steadily improving. Most
of this success can be attributed to Convolutional architectures. Some work
researched to combine CNN with recurrent neural networks. [12]. The LSTM
architecture makes a great improvement in saliency prediction. And [12] also
proposed to use combined evaluation metrics loss to train the model. In attention
mechanism fields, Woo [13] use large filter size of 7 × 7 over the spatial features
in their Convolutional Block Attention Module (CBAM) to produce a spatial
attention map. Followed by [13], [14] proposed Relation-aware Global Attention
(RGA) module with spatial-wise and channel-wise sequentially (RGA-SC). Their
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extensive ablation studies demonstrate that our RGA can significantly enhance
the feature representation power.

Fig. 1. The overview of the proposed saliency prediction model. The left image is the
input image, we use the proposed CNNs architecture to extract feature and process
the saliency prediction. The module shown in different color would be introduced in
detail in Sec. 3.

3 Proposed Architecture

In this section, we introduce the proposed architecture.

3.1 Overview Structure

The whole architecture of the proposed network is introduced in this subsection.
For saliency prediction, the fully convolutional network (FCN) has achieved great
performance. To extract the deeper features and high-level semantic information,
we need an encoder to decrease the size of the feature map and save computation
resources. As shown in Fig. 1, the encoder of the proposed architecture has
convolutional layers, max-pooling operations which decrease the size and increase
the receptive field, and the RGA-SC module which would introduce in subsection
2. After the process of the encoder, the proposed network obtain a multi-channel
tensor which has a smaller size feature map and high-level information. To reduce
the size, we use upsampling operations in the decoder and finally get the saliency
probability map through the final sigmoid layer.

The size of input images is generally changed to 256 × 256 with initial 3
channels. In the encoder part, except the RGA-SC module, the architecture of
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the network is identical in architecture to VGG16 [15] except the final max-
pooling layer and three fully connected layers. Through the encoder part, the
size of the input feature map is changed to 16 × 16, where the RGA-SC module
would not change the size of the feature map. For the decoder part, the order
of its layer is revered with the encoder with max-pooling operations replaced
by upsampling operations to restore the size of the feature map. At the final
of the network is a 1 × 1 convolutional layer with sigmoid non-linearity which
ultimately produces the predicted saliency map. There also have 3 U-Net like
architecture that concatenates the feature maps in the same scale in encoder
and decoder, we call multi-level integration (MI) in this paper. Each MI module
has 3 convolutional layers followed by ReLU.

3.2 Relation-aware Global Attention Module

Though the RGA module [7] is proposed to solve problems for other field, we
could also draw lessons from it in saliency prediction. In RGA module, spatial-
wise Relation-aware Global Attention (RGA-S) and channel-wise Relation-aware
Global Attention (RGA-C) are introduced respectively.

Spatial Relation-aware Global Attention
Given input tensor X ∈ RC×H×W , where C denotes channel, H denotes height,
W denotes width. For learning the spatial attention map of size H ×W , RGA-
S block is proposed. Taken C-dimensional feature vector at each position as a
feature node, so there are N = H ×W nodes. Each feature node of RGA-S can
be represented as xi ∈ RC , where i = 1, 2, ..., N .

Then the pairwise relation between i-th node and j-th node can be defined
as:

ri,j = fs(xi,xj) = θs(xi)
Tφs(xj), (1)

where θs and φs are both 1 × 1 convolutional layer followed by bath normaliza-
tion (BN) and ReLU activation, and BNs are omitted to simplify the equation.
Then the pairwise relations for all the nodes can be represented by Affinity
Matrix Rs ∈ RN×N .

For the i-th feature node, the relation vector can be denoted as:

ri = [Rs(i, :), Rs(:, i)] ∈ R2N (2)

To learn the attention of the i-th feature node, they combine the pairwise re-
lations ri and the feature node itself to get the spatial relation-aware feature
ỹi:

ỹi = [poolc(ψs(xi)), ϕs(ri)] ∈ R1+N/s1 , (3)

where ψs and ϕs are both 1 × 1 convolutional layer followed by BN and ReLU
activation, poolc denotes global average pooling along the channel dimension to
reduce the channel of the input tensor to 1.
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For mining valuable information from the spatial relation-aware feature ỹi,
two 1 × 1 convolutional layer W1 and W2 followed by BN are implemented to
get spatial attention value ai:

ai = Sigmoid(W2ReLU(W1ỹi)), (4)

where W2 decreases the channel with a ratio and W2 shrinks the channel to 1 to
save computation resources.

Channel Relation-aware Global Attention
Similar to RGA-S, when RGA-C get the input tensor X ∈ RC×H×W , they take
the d = H ×W -dimensional feature map at each channel as a feature node. So
each feature node of RGA-C can be represented as xi ∈ Rd, where i = 1, 2, ..., C.

Then the pairwise relation between i-th node and j-th node can be defined
as:

ri,j = fs(xi,xj) = θs(xi)
Tφs(xj), (5)

where θs and φs are same to RGA-S. Then the pairwise relations for all the
nodes can be represented by Affinity Matrix Rc ∈ RC×C .

For the i-th feature node, the relation vector can be denoted as:

ri = [Rc(i, :), Rc(:, i)] ∈ R2C (6)

Then follow the Eq. (3) and (4), we can get the channel relation-aware feature
ỹi and channel attention value ai.

3.3 Multi-level Integration and Loss Function

The proposed architecture employs a U-Net like architecture that symmetrically
expands the feature maps after upsampling operations in the decoder. Informa-
tion vanishing is inevitable Due to the max-pooling operation in the encoder. As
shown in Fig. 1, three MI module are combined in the proposed architecture. The
input feature map of MI is the feature map before the last three max-pooling
operations. Every step of expansion is composed of an upsampling of the fea-
ture map and concatenation with the same scale feature map from the encoder.
Additionally, three 3×3 convolutional layers with stride 1 padding 1 followed by
ReLU are used in each MI.

For the loss function, we follow the paper [8]:

L(̂I, I) = αKLdiv(̂I, I) + βCC (̂I, I) + γSIM (̂I, I), (7)

where Î and I are predicted saliency maps and the ground truth, α, β and γ are
three coefficients take 10, -1, -1 followed [8].

4 Experiments and Analysis

In this section, we show the details of experiments and comparison results.
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4.1 Experimental Setup

We use the largest available dataset SALICON [4] to train and test the pro-
posed model. The dataset consists of 10,000 images for training, 5,000 images
for validating and 5,000 images for testing. In this paper, we train the proposed
model on SALICON datasets with 10,000 training images and use 5,000 images
for validating. All experiments are conducted with the deep learning Pytorch
framework. The model trains for 10epochs with the learning rate 1e-4 and re-
ducing after every 3 epochs. The ADAM optimization algorithm is employed to
train the whole network. The proposed model is trained with a batch size of 8
on one NVIDIA GeForce GTX 1080Ti GPU with 11 GB memory.

4.2 The contribution of each component

In Table 2, we compare the contribution of each component, where VGGM de-
notes the original encoder-decoder architecture without multi-level integration
and RGA-SC module. VGGM+RGA(1) denotes the original encoder-decoder
architecture with only one RGA-SC module which added after the final convolu-
tional layer and symmetrical position. VGG+RGA(1)+MI denotes the previous
model plus three multi-level integration. It is obviously that each component

Table 1. Performance comparison of different version on validation set of Salicon-2017

Model KLdiv↓ CC↑ SIM↑
VGGM 0.272 0.854 0.745
VGGM+RGA(1) 0.266 0.858 0.748
VGGM+RGA(1)+MI 0.241 0.876 0.768

effectively enhance the network, we call the model combined with the original
encoder-decoder architecture, RGA-SC module and multi-level integration mod-
ule VGGRGA. Table. 2 compare the performance when add different number
of RGA-SC module. VGGRGA(n) means there are 2 × n RGA-SC modules in
the architecture. VGGRGA(3) is shown as Fig. 1. We don’t do the experiments
of VGGRGA(4) and (5) is due to the limited computation memory. After all,
we can find that even if add more RGA-SC module, the performance would not
improve a lot from Table. 2.

4.3 Comparison with other work

VGGSSM [8] is a similar work which using self-attention as enhancing tool to
improve the performance of network for saliency prediction task. They use self-
attention after the final convolutional layer of encoder to enhance global relation
among all the pixels in feature map. We compare the results with them in valida-
tion set of Salicon-2017 dataset. And the comparison results show the proposed
model obtains competitive performance in saliency prediction.
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Table 2. Performance comparison of the proposed model with 1, 2, 3 RGA-SC module

Model KLdiv↓ CC↑ SIM↑
VGGRGA(1) 0.241 0.876 0.768
VGGRGA(2) 0.239 0.876 0.768
VGGRGA(3) 0.239 0.877 0.769

Table 3. Performance comparison with the proposed model and VGGSSM [8]

Model KLdiv↓ CC↑ SIM↑
VGGSSM 0.251 0.876 0.769
VGGRGA(3) 0.239 0.877 0.769

4.4 Conclusions

In this paper, a saliency prediction model VGGRGA upon encoder-decoder ar-
chitecture is proposed. The model integrates three important components and
the experimental results demonstrate the efficiency of the components. Addition-
ally, this paper also research the results with different numbers of RGA mod-
ule. Furthermore, we would compare all the attention methods’ contribution to
saliency prediction task.
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