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ABSTRACT Traffic sign detection is a critical task in the visual system of the Advanced Driver Assistance
System (ADAS) and the Automated Driving System (ADS). Although the general object detection has
achieved promising results by using Feature Pyramid Network (FPN) in recent years, we still observed
that FPN cannot obtain satisfactory results in traffic sign detection because the size and class distribution
of traffic signs are extremely unbalanced. To overcome this problem, a novel Plug-and-Play neck network
Integrated Feature Pyramid Network with Feature Aggregation (IFA-FPN) is proposed in this paper based
on the statistical characteristics of traffic signs. First, a lightweight operation is introduced to fully utilize the
model and improve the inference speed of the model. Second, an Integrated Operation (IO) is introduced
to solve the imbalance problem of Region-of-Interests (RoIs) in pyramid levels. Third, we introduce a
Feature Aggregation (FA) structure to strengthen the feature representation capacity of feature maps,
thereby enhancing the network robustness against the size discrepancy of traffic signs. The experiments
are performed on three mainstream datasets, i.e., the German Traffic Sign Detection Benchmark (GTSDB),
Swedish Traffic Sign Dataset (STSD), and Tsinghua-Tencent 100k dataset (TT100k). The experimental
results demonstrate the superiority of the proposed IFA-FPN in the traffic sign detection tasks. Specifically,
when the proposed IFA-FPN is applied to the Cascade RCNN, it achieves 80.3% mAP in GTSDB which
surpasses FPN by 9.9%, 65.2% in mAP in STSD which surpasses FPN by 3.5%, and 93.6% in mAP in
TT100k which surpasses FPN by 1.6%.

INDEX TERMS Automated driving system, driver assistance system, feature aggregation, small object
detection, traffic sign detection.

I. INTRODUCTION
With the development of the driver-assistance system and
autonomous vehicle, the Traffic SignDetection (TSD) system
has been heavily studied over the past decade. A suitable
traffic sign detection system helps vehicles perceive the sur-
rounding environment. In the Advanced Driver Assistance
System (ADAS), the traffic sign detection system reminds
drivers of traffic constraints. In Automated Driving System
(ADS), except for perceiving the surrounding environment,
the traffic sign detection system can also provide traffic sign
location information to the vehicle navigation system. The
location information can be used as distinct landmarks for
generating High Definition Map (HD Map).

The appearance of traffic signs is designed for attracting
human attention easily and quickly. Methods [1]–[6] utilize
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the appearance characteristics of traffic signs to extract bet-
ter features in the feature extraction step. These hand-craft
features-based methods are not robust enough for distin-
guishing between real and fake signs in real-world because
many objects have similar appearance with traffic signs. It is
hard to use the low level hand-craft features to represent the
distinguishing characteristics of traffic signs.

Thanks to the development of deep learning algorithms,
object detection using Convolution Neural Network (CNN)
made remarkable achievements. CNN-based architectures
such as Fast R-CNN [7], Faster R-CNN [8], Cascade R-CNN
[9], Single Shot multibox Detector (SSD) [10], and YOLO
[11] became mainstream detectors that achieve remarkable
performance. Different from general objects, traffic signs
are relatively small-scale. The scale of most traffic signs
in the Swedish Traffic Sign Dataset (STSD) [5], [6] and
Tsinghua-Tencent 100k Dataset (TT100k) [12] is less than
100 pixels, shown in Fig. 2. It means that most traffic
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signs occupy less than 0.8% of an image in STSD, and
less than 0.2% in TT100k. Detecting small objects is more
challenging than large objects because the CNN extracts
features using multi-level convolution and pooling operations
to obtain deeper semantic features. Those operations result
in that small objects only can exist in the shallow layers
but the shallow feature is not powerful enough in complex
traffic scenes because of lack of deep semantic information.
To obtain deeper semantic features in shallow layers, many
works [13]–[18] utilized the Feature Pyramid Network (FPN)
[19] or feature fusion architecture to merge deep and shallow
feature layers. The original detection models without FPN
extract features only using bottom-up pathway Ci, thus the
strong semantic features only exist in deep layers C4 and C5.
FPN merge the feature maps from a top-down pathway Pi
and lateral connections Li to build high-level semantic fea-
ture maps P2-P5 for the following predictions. Specifically,
the shallow feature layers P2-P4 contain strong semantics
features as deep feature layers C5, P5, and P6.

The FPN [19] is designed for detecting general objects
and it achieved promising results in general object detection.
However, traffic signs are relatively small-scale and size dis-
tribution of them are unbalanced. We observe that the FPN
cannot achieve satisfactory performance in traffic signs detec-
tion. To design a more suitable neck network for traffic sign
detection methods, we analyze the statistical characteristics
of traffic signs including the size distribution and the usage of
pyramid levels P2-P5 in Region-of-Interest (RoI) Alignment
step. The architecture of the proposed Integrated Feature
Pyramid Network with Feature Aggregation (IFA-FPN) is
shown in Fig. 1. The IFA-FPN is designed based on the
following three ideas:

1) We found that deep pyramid levels play a minor role
in traffic sign detection and therefore we remove deep
layers for reducing inference time.

2) We found that dispersedly mapping RoIs into different
pyramid levels is unsuitable in traffic sign case because
the usage of pyramid levels is extremely unbalanced.
Dispersedly mapping RoIs leads to the weak gener-
alization ability of infrequently used pyramid levels.
To solve this problem, we proposed an Integrated Oper-
ation (IO) to integrating all RoIs into a specific pyramid
level. Although some researchers [19] demonstrate
dispersed mapping RoIs helps general object detectors,
it is noteworthy that we aim to demonstrate integrated
mapping RoIs is more suitable for traffic sign detection.

3) In FPN [19], the pyramid level P2 only need to repre-
sent features of traffic signs which size in (0, 112].
In IFA-FPN, the P2 need to represent features of all
size of traffic signs because of the proposed integrated
operation. Therefore, enhancing the feature representa-
tion capability of P2 is necessary. Therefore, a Feature
Aggregation (FA) structure is introduced to strengthen
the feature representation capability of P2 by aggre-
gating features from different depths so as to enhance
the network robustness against size discrepancy.

The contributions of this work are summarized as follows:
1) To overcome the size and class imbalance problem of

traffic signs, we proposed an IO which integrates all
scale RoIs into a certain pyramid level. To the best of
our knowledge, this paper is the first proof that inte-
grated mapping RoIs helps the performance of traffic
sign detection.

2) To better represent data with large variance in size,
we proposed the FA structure to increase the fea-
ture representation capacity of a layer by attach-
ing FA before the layer. The FA structure aggre-
gates multi-scale features to obtain features with high
representation capacity. To improve inference speed
of it, a Light-FA is further proposed by replacing
ensemble-like structure in FA using the residual-shape
structure. The ablation experiments show that different
paths act as different roles in different size traffic signs.

3) The proposed IFA-FPN is a Plug-and-Play neck net-
work that can be applied in mainstream object detectors
to improve performance with similar inference speed.
Specifically, IFA-FPN improves performance of Faster
RCNN by 14.6% mAP, and improves performance of
Cascade-RCNN by 9.9% mAP in the German Traffic
Sign Detection Benchmark (GTSDB) dataset [20].

4) Comprehensive experiments have been done to evalu-
ate the performance of the proposed method on three
mainstream datasets including GTSDB, STSD [5], [6],
and TT100k [12]. The proposed method achieve supe-
rior performance on STSD and TT100k dataset. Specif-
ically, the proposed method obtain 80.3% mAP in
GTSDB, 65.2% mAP in STSD, and 93.6% mAP in
TT100k.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III describes the
proposedmethods. In section IV, the datasets, evaluationmet-
rics, and the experiments details and analyses are introduced.
Finally, Section V concludes this paper.

II. RELATED WORK
Because the appearance of traffic signs is designed for attract-
ing human attention easily and quickly, the traffic signs are
designed with regular shapes and high saturation color. The
traditional methods [1]–[4] utilized the appearance character-
istics of traffic signs to extract better features. Reference [1]
utilized the early visual features: red, green, and blue channel
of the input images to create three sets of feature maps,
i.e., color pairs opponency maps, center-surround differences
maps, and local orientation maps, which provide robust fea-
tures for the subsequent classifier. Based on the feature
extraction method in [1], [2] further proposed an enhanced
color pairs opponency maps based on categories of traffic
signs. After obtaining robust features, the traditional methods
applied various classifiers on these features to pursue a robust
detector. The traditional methods have two shortcomings,
one shortcoming is that hand-craft features are not robust
enough for distinguishing traffic signs in the real world.
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FIGURE 1. The architectures of the proposed IFA-FPN. The blue outlines
indicate feature maps. Thicker blue outlines denote semantically stronger
features.

Another shortcoming is running a complex feature extractor
and classifier is time-consuming.

The deep learning-based traffic sign detectors have made
huge progress because they can solve the above two short-
comings well. Deep learning-based methods utilized CNN
to extract useful and generalized features autonomously by
training CNN on extensive images. Reference [21] first
adopted a fully convolutional network (FCN) [22] to obtain
potential traffic sign regions and then used CNN to classify
the region’s class. It achieved good performance, but the
computation cost is expensive because of FCN. Lu et al. [14]
proposed two sub-networks for traffic signs detection. First,
some attention regions that are likely to contain traffic signs
are obtained by using an Attention Proposal Modeler (APM).
Then, it localizes and classifies traffic signs in these attention
regions by an Accurate Locator and Recognizer (ALR). The
computation cost is low because the high-resolution images
are resized to lower resolution images in APM, but the recall
accuracy is not satisfactory. Subsequently, for improving
the detection performance of small traffic signs, a popu-
lar solution is to combine shallow and deep feature maps.
Yuan et al. [15] proposed a multi-resolution conv-deconv
feature fusion network that connects convolution and
de-convolution layers to magnify the feature maps and obtain
higher semantic features simultaneously. Tian et al. [16]
proposed a multi-scale recurrent attention network which
includes a multi-scale attention module and a recurrent atten-
tionmodule. Samewith [15] and [16] obtained themulti-scale
feature maps by the de-convolution operation which is time-
consuming. Instead of de-convolution operation, Tabernik
and Skoaj [18] adopted FPN to generate high-resolution
feature maps by up-sampling operations. In the meantime,
[18] extended their traffic sign detector with several improve-
ments. The improvements include the data augmentation and
Online Hard-Example Mining (OHEM) [23].

Because the size and class imbalance problem in traf-
fic sign datasets are extreme, the above methods [2], [5],
[15], [16], [18], [21] did not use the complete dataset to
evaluate their methods. References [5], [15], [18], [21] only
aimed to detect large-scale and visible traffic signs in a
dataset. For example, they only considered the visible traffic

signs in STSD with at least 50 × 50 pixels. Reference [16]
classified traffic signs into superclasses rather than classes.
Specifically, [16] divided traffic signs in GTSDB [20] into
four superclasses: prohibitory signs, mandatory signs, dan-
ger signs, and others though GTSDB provides 43 classes in
total. We consider classify traffic signs into superclasses is
impractical in real-world application because traffic signs in
same superclass still contain different information, such as
‘‘speed limit 20’’ and ‘‘speed limit 80’’. References [2], [5]
only considered six main classes, and [18], [21] considered
ten classes in STSD though STSD provides 20 classes in
total. These inconsistencies of the evaluation metrics make
comparison difficult.

In this paper, based on the distribution characteristics of
traffic signs, we propose an IFA-FPN by modifying the
existing FPN [19] structure so that IFA-FPN is suitable for
extracting traffic signs features. The proposed IFA-FPN is
a Plug-and-Play neck network that can be applied in main-
stream object detectors to improve performance. To carry
out the comprehensive experiments, our proposed IFA-FPN
is evaluated on three mainstream traffic sign detection
datasets. To compare results in a fair manner, all results
are re-performed by open MMLab Detection Toolbox and
Benchmark (MMDetection) [13] under the same hardware
environment in our local computer. The details of datasets
will describe in Section IV.

III. PROPOSED METHOD
The proposed method IFA-FPN is designed based on the FPN
structure but it solves what the FPN cannot do well in traffic
sign detection. In this section, the feature pyramid struc-
ture for feature extraction is first described. Then, we intro-
duce the motivation and details of the proposed integrated
operation (IO). Finally, three types of multi-scale feature
aggregation (FA) structures are described subsequently.

A. STRUCTURE OF FEATURE PYRAMID
The Fig. 1 illustrates the architecture of our proposed
IFA-FPN. The IFA-FPN uses the bottom-up pathway Ci,
the top-down pathway Pi, and lateral connections Li to
build pyramid levels. The bottom-up pathway Ci is the
feed-forward computation of the output of i-th stage blocks
of backbone network, such as, ResNet-50, ResNet-101, and
ResNext-50, etc. The size of feature map Ci is 2−i times of
the size of input images. i = {0, . . . , I } indicates the i-th
stage blocks of backbone network, where i = 0 indicate the
input image, and I = 4 is total numbers of stages are used
in IFA-FPN. Previous detectors Fast RCNN [7] and Faster
RCNN [8] without FPN only use features on the bottom-up
pathway Ci to predict class. They cannot achieve satisfied
performance because the semantic features in shallow layers
of Ci are weak.
To enhance network performance, the top-down pathway

Pi and lateral connections Li are built to generate high-level
semantic feature maps. Then, prediction is performed on the
generated high-level semantic feature maps Pi. With the help
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FIGURE 2. The size distribution of traffic signs in (a) STSD dataset. The
orange bars are the blurred samples, and the blue bars are the visible
samples, and (b) TT100k dataset. The horizontal axis is the size (in pixel)
of traffic signs. The vertical axis is the number of traffic signs.

of Pi and Li, the shallow feature layers P2 and P3 contain
strong semantics features as the deep feature layers P4 as
shown in Fig. 1. The top-down feature Pi is computed by Pi+1
and Ci as follows,

Pi =

{
Fi(Pi+1,Li(Ci)), i < I
Li(Ci), i = I

(1)

where Fi is the i-th fusion operation which includes three
steps in detail, shown in the top right of Fig. 1. The first
step is up-sampling Pi+1. Then, up-sampled Pi+1 and lateral
information are merged by element-wise addition. The third
step is to process the merged feature maps by a 1× 1 convo-
lution layer. PI+1 is a stride two down-sampling of PI . The Li
denotes the i-th lateral connections. Li is denoted as follows,

Li :

{
FA(·), i = 2
Conv1× 1(·), otherwise

(2)

where Conv 1×1(·) indicates a 1×1 convolution layer. FA(·)
denotes the feature aggregation module which will described
in Sec III.C.
Compared with the original FPN, the deep pyramid levels

C5, P5, and P6 in the FPN are removed in our proposed
IFA-FPN to fully utilize the model and improve the inference
speed of the model. There are two reasons. One is deep pyra-
mid levels play a minor role in feature extraction step. Deeper
features cannot provide more accurate and useful information
of traffic signs because traffic signs are relatively small-scale,
as shown in Fig. 2. Another is deep pyramid levels also play a
minor role in RoI Alignment step. The usage of pyramid lev-
els P2-P5 in RoI Alignment step of original FPN are reported
in Fig. 3. In STSD, 0.01% RoIs are mapped into pyramid
levels P4 and P5. In TT100k, 0.02% RoIs are mapped into
pyramid levels P4 and P5. Considering the trade-off between
accuracy and efficiency, the deep pyramid levels are not used
in our proposed IFA-FPN.

FIGURE 3. The usage of pyramid levels P2-P5 in region-of-interest (RoI)
alignment of original FPN [19]. (a) STSD dataset. (b) TT100k dataset.

B. THE INTEGRATED OPERATION (IO)
In FPN, the RoI Alignment is performed on different pyramid
levels based on the scale of RoI. an RoI is assigned to the
feature pyramid level P{i|i=k} according its scale s by:

k =

{
k0, s < 112⌊
k0 + log2

s
56

⌋
, otherwise

(3)

s =
√
wh (4)

where k0 is the bottom level to map the RoI, default as
k0 = 2 in FPN [19]. Specifically, when a RoI with s < 112,
P{i|i=2} is the target level to map the RoI; when a RoI with
112 ≤ s < 224, the RoI will be mapped into a low-resolution
pyramid level P{i|i=3}. w and h is the width and height of RoIs
corresponding to the input image.

The FPN achieved promising results in general objects
detection, but it cannot achieve satisfactory performance in
traffic sign detection. It is because mapping RoIs into features
pyramid dispersedly is unsuitable in traffic sign detection
task. To solve this problem, the Integrated Operation (IO) is
proposed to integrate all RoIs from different feature pyramid
levels to a certain high-resolution pyramid levelP2. The usage
of pyramid levels P2-P5 in RoI Alignment step are reported
in Fig. 3.

There are two advantages of the IO module for detect-
ing traffic signs. One is that integrating large RoIs into
P2 improves generalization ability of P2. Compared with
small-scale traffic signs, large-scale traffic signs provide bet-
ter features. The distribution of the quality of traffic signs
in STSD is reported in Fig. 2(a) which shows small traffic
signs contain many blurred signs, and the quality of most
large-scale traffic signs are visible. Also, during the feature
extraction step, the small traffic signs lose information eas-
ier than large traffic signs with the increasing depth due to
the max-pooling operator. Thus, integrating RoIs of large
traffic signs into P2 can providing more accurate and useful
information, thereby improving small traffic sign detection
performance. Another advantage is that IO eliminates the
impact of low generalization ability ofP3. Fig. 3 indicates that
small part of RoIs are mapped on P3 which leads to the weak
prediction ability of P3 because of lack of training samples.

C. THE LIGHT MULTI-SCALE FEATURE
AGGREGATION (FA) STRUCTURE
To make the IFA-FPN work as expected, enhancing the fea-
ture representation capability of P2 is necessary. Because not
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FIGURE 4. The structures of (a) original lateral connection Li and (b-d) three types of feature aggregation modules.

only small RoIs (s < 112) aremapped toP2, but also the large
RoIs (s ≥ 112) need to assigned to P2 in IFA-FPN. To help
P2 better represent data which has large variance in size,
we convert lateral connection layer L2 to the proposed feature
aggregation structure, which aggregate multi-scale features
from different convolution layers path. Three types of feature
aggregation structures, including Full-FA, Shared-FA, and
Light-FA, will be introduced step by step.

The baseline lateral connection used in FPN is illustrated
in Fig. 4(a), which is a 1 × 1 convolution layer. Instead of
only using one 1 × 1 layer in FPN, the proposed Full-FA is
designed as residual-shape which contain an identity function
path y0 to learn simple features and a mapping function F(·)
to learn complex features. As shown in Fig. 4 (b), given the
feature maps C2, the Full-FA aims to learn a residual C̃2 with
a mapping function F(·) as follows,

P2 = C2 + C̃2 s.t. C̃2 = F(C2) (5)

where F(·) including several convolution operations.
Moreover, to achieve multi-scale feature learning, we design
the function F(·) as a multi-stream building block, which
consists of multiple convolution streams y1, y2, y3. The first
stream contains a 1× 1 layer that learns single-scale features
(scale = 1). The second stream consists of one 1 × 1 layer
and one 3× 3 layer to learn larger scale features (scale = 3).
The third stream further increases receptive field (scale = 5)
by adding a 3 × 3 layer. Then, the element-wise summation
is applied to aggregate the C2, y1, y2, and y3 to obtain
multi-scales feature map P2.
Then, we introduce the Share-FA and Light-FA that illus-

trated in Fig. 4(c) and Fig. 4(d). Veit et al. [24] reveal that the
paths in residual networks show ensemble-like behavior, and
they do not strongly depend on each other. In other words,
the residual-shape architecture can be seen as a collection
of different paths. Inspired by [24], we further propose a
Light-FA to reduce the inference time of model because
the Full-FA is heavy and time-consuming. The Light-FA
is designed to a residual-shape to represent ensemble-like
behaviors of Full-FA. The structure of Light-FA is shown
in Fig. 4(d). The Light-FA is equivalent to the Full-FA if the
convolutional kernels in Full-FA share weights as Fig. 4 (c).
The Shared-FA can be represented as follows,

P2 = C2 + y1+ y2+ y3 (6)


y1 = f1(C2)
y2 = f2(f1(C2))
y3 = f3(f2(f1(C2)))

(7)

where f1 denotes the first 1 × 1 convolutional layer, and
f2 denotes the 3 × 3 convolutional layer, and f3 denote the
another 3 × 3 convolutional layer. The Light-FA can be
represented as follows,

P2 = C2 + f1(C2)+ f2(f1(C2))+ f3(f2(f1(C2))) (8)

From Eq.(5), Eq.(6) and Eq.(7), it is clear that Light-FA is
equivalent to the Shared-FA in convolution operations. Note
that the ReLU-activated layers after each convolutional layer
are ignored in notation in Fig. 4. Finally, the Light-FA are
built to obtain P2 with high representation capacity. In this
paper, the FA is defaulted to Light-FA.

IV. EXPERIMENTS
A. DATASETS AND EVALUATION METRICS
To carry out the comprehensive experiments, the proposed
IFA-FPN is evaluated on three mainstream traffic sign detec-
tion datasets: GTSDB [20], STSD [5], [6] and TT100k [12].
The detailed information of datasets is reported in Table 1.
GTSDB: The German Traffic Sign Detection Benchmark

provides 600 images and 815 traffic signs for training, and
300 images and 353 traffic signs for testing. The image size
in GTSDB is 1360× 800. There are 43 classes in total.
STSD: The Swedish Traffic Sign Dataset [5], [6] pro-

vides 6617 images and 6651 labeled traffic signs in total.
It contains two sets (set1 and set2) of images with resolution
1280 × 960 that were captured from Swedish highways and
city roads. Each set contains 5 parts and has 20% labeled
images. Set1Part0 is used for training, and Set2Part0 is used
for testing in this paper. There are 20 classes in total.
TT100k: The TT100k is a large-scale traffic sign detection

dataset released by Tsinghua University and Tencent Corpo-
ration. Compared with GTSDB and STSD, TT100k provides
a large number of images with high resolution 2048× 2048.
The number of traffic signs in TT100k is 19.9 and 3.5 times
much than in GTSDB and STSD, respectively.

Same to COCO [25], the scale s of objects is used to
separate different size groups: Small (s < 32), Medium
(32 ≤ s < 96), Large (96 ≤ s < +∞) to report the detection
result, thereby analyzing the impact of IFA-FPN in different
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TABLE 1. The number of traffic sign of different size group in each dataset.

TABLE 2. Ablation study on individual components of IFA-FPN. Baseline: Detector adopted the FPN as the neck network. S: Small size group. M: Medium
size group. L: Large size group. FA: defaulted as Light-FA.

TABLE 3. Ablation study on removing different pyramid levels i in FPN on
TT100k. The performance in mAP (%) is reported. S: Small size group. M:
Medium size group. L: Large size group.

scales. s is computed as,

s =
√
w2 + h2 (9)

where w and h are the width and height of a traffic sign,
respectively.

The mean average precision(mAP), which is commonly
used as the evaluation criteria in object detection dataset [25],
[26], is used as the evaluation measurement in this paper.
Average Precision (AP) is the area under the precision-recall
curve, which reliably describes the trade-off between the
precision and the recall. AP is calculated for one class object,
and mAP is the average value of AP over all considered
classes. In this paper, a fixed Intersection-over-Union (IoU)
with value 0.5 is used for computing mAP.

B. IMPLEMENTATION DETAIL
All experiments have been tested on a desktop with Intel
Core i5-6600 3.30-GHz CPU and 1 NVIDIA GeForce Titan
1080Ti GPU with 11 GB memory. MMDetection [13] is
used to implement the experiments and evaluate the results.
We follow the default pre-processing techniques and hyper-
parameters in MMDetection to perform all experiments on
three dataset, i.e., data augmentation techniques and anchor
setting. The backbone network, default as ResNet-50 [27],
is pre-trained on ImageNet [29] to extract feature. The
Stochastic Gradient Descent (SGD) optimization algorithm
with 0.9 momentum is employed. For GTSDB and STSD,

the network is trained in 20 epochs, and the learning rate
is 0.01 for the first 15 epochs and 0.001 for the following
epochs. The training batch size is 2 in GTSDB and STSD.
For TT100k, the network is trained in 10 epoch. The initial
learning rate is 0.001, which decreases to 0.0001 at the 8th
epoch. The training batch size is 1 in TT100k because of the
limited memory of the GPU.

C. ABLATION STUDY
In this section, we first analyze the influence of individual
components IO and FA of IFA-FPN by mAP and Frames
Per Second (FPS). Then, the ablation study of the effect
of removing more pyramid feature layers are performed.
After that, the comparison results of three types FA struc-
ture including Full-FA, Shared-FA and Light-FA are reported
in Table 4 by mAP, FPS and GPU memory usage. Subse-
quently, the effect of each skip connection in FA are reported.
At last, we report the performance of IFA-FPN with different
backbone network.

1) THE EFFECT OF INDIVIDUAL COMPONENTS
We evaluate the performance and efficiency of individual
components, including IO and FA, by mAP and FPS in
GTSDB, STSD, and TT100k dataset, the results are summa-
rized in Table 2. The top part of Table 2 performs the experi-
ments using Faster RCNN as the detector, and the bottom part
reports the results of Cascade RCNN. We show the effect of
the IO and FA by adding them into the baseline model one by
one. Baseline denotes that the detector adopted the original
FPN [19] as the neck network. The performance of baseline
is not satisfactory, especially in small and medium traffic
sign detection. After integrating all scale RoIs into a certain
pyramid level by IO, the performance of Faster RCNN and
Cascade RCNN are enhanced remarkably, especially in small
and medium traffic signs. All methods achieve 100.0% mAP
in large size group of GTSDB because of the limited number
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TABLE 4. The comparison results of using different FA structures in lateral connection L2. ‘w/o FA’ is the baseline result.

TABLE 5. Ablation experiments of removing certain skip connection in
test step. All use: our proposed Light FA, all skip connections are used.
Del yi : the skip connection yi is deleted while other skip connections are
keep. Top part reports the results of Faster RCNN, and bottom part
reports the results of Cascade RCNN.

of traffic signs shown in Table 1. IO also improves the per-
formance of large traffic signs in STSD and TT100k, which
indicates that IO can bring stable performance enhancements.
These results show that the behaviors of IO are consistent
with our intuitionmentioned in Sec III.B.Moreover, the infer-
ence speed of detectors with IO are faster than before because
of removing the deep pyramid levels C5, C6, and P6. These
results demonstrate the effectiveness of our proposed IO.

We also evaluate the effect of FA. As reported in Table 2,
it is clear that FA further improves the detector perfor-
mance by large margins. Specifically, ‘‘Faster RCNN+ IO+
FA’’ improve the mAP from 68.7% to 78.0% and 58.2% to
60.2% in GTSDB and STSD, respectively. The IO and FA
bring more substantial performance gains in small datasets
(GTSDB and STSD) than big dataset (TT100k) because the
size and class imbalance problem is more obvious in small
datasets. Experimental results show that each component in
our method boost performance, and the combination of them
achieves the best performance.

2) THE EFFECT OF REMOVING DIFFERENT PYRAMID
FEATURE LAYERS
As mentioned in Sec III.A, the deep pyramid feature layers in
the original FPN [19] are removed in our proposed IFA-FPN
to reduce the model inference time. We perform the ablation
experiments to investigate the influence of removing more
pyramid levels. The results are reported in Table 3. In Table 3,
The detector is Cascade RCNN [9], and the backbone net-
work is ResNet-50 [27], the IO and FA modules are not
applied. The original original FPN used full pyramid layers
C2,3,4,5 + P2,3,4,5,6. When more deep pyramid feature layers
are dropped, the inference speeds of models are improved.

The best performance is achieved when pyramid feature lay-
ers C2,3,4 + P2,3,4 are used. Dropping more pyramid feature
layers C3,4 and P3,4 accelerate the inference speed but they
cannot further improve the model performance. It is clear
that the performance significantly declined when we only
use C2 + P2. Considering the trade-off between accuracy
and efficiency, only the C5, P5, and P6 are removed in our
proposed IFA-FPN finally.

3) THE ANALYSIS OF FA STRUCTURE
Table 4 evaluates the architectural design choices of FA that
are shown in Fig. 4. The ‘w/o FA’ in Table 4 denotes the base-
line module that adopts 1× 1 convolution layer as the lateral
connection L2 illustrated in Fig. 4(a). It is clear that all types
of FA can consistently improve the results. It indicates the
necessity of enhancing the feature representation capability
of P2 and the validity of the proposed FA structure. Among
three FA structures, the primary structure is Light-FA. There
are two reasons. One is that two detectors with Light-FA can
achieve the best performance in all datasets. Another is that
Light-FA reduces the model inference time and the model
size. Specifically, Cascade RCNN with Full-FA occupies
4962MB GPU memory, and Cascade RCNN with Light-FA
occupies 4554MB GPU memory. The experiments demon-
strate the superior performance and efficiency of the proposed
FA.

Furthermore, we investigate the effect of skip connections
in Light-FA by removing one of them from the trained model
in testing step. The effects of skip connections are observed
by mAP and its fluctuation in STSD shown in Table 5.
We start from the baseline results that shown in the first row
of detectors as ‘‘All used’’ and progressively measure the
impact of removing each skip connection y0, y1, and y2. The
fluctuation of mAP of Faster RCNN and Cascade RCNN are
consistent. The performance of small and medium group size
is greatly affected by removing the certain skip connection,
while the performance of large group size has little effect.
This indicates that skip connections play important roles in
small and medium traffic sign detection, especially in small
traffic signs. The results demonstrate the validity of the pro-
posed FA structure in multi-scale feature learning.

4) ANALYSIS OF SCALABILITY OF IFA-FPN
Table 6 demonstrates that our proposed IFA-FPN can
be applied in mainstream object detectors with different
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TABLE 6. Ablation experiments with different detectors, neck networks, and backbone networks.

TABLE 7. Comparison experiments with feature-based detectors on
GTSDB† and STSD†. P.: Prohibitory (%), M.: Mandatory (%), D.: Danger
(%). Rec.: Recall (%), Prec.: Precision (%), F1.: F1-measure (%).

TABLE 8. Comparison experiments with detectors on GTSDB in Rec.:
Recall (%), Prec.: Precision (%), F1.: F1-measure (%).

backbone networks to improve performance of them consis-
tently with similar inference speed. We perform the compari-
son experiments between the FPN and our proposed IFA-FPN
with the different backbone network including ResNet-50,
ResNext-50, ResNet-101, and ResNext-101 [27], [28]. It is
clear that IFA-FPN brings significant improvement over FPN
in all backbone network cases, which are consistent with the
ResNet-50 results in Table 2. The experiments demonstrate

IFA-FPN has good scalability with other detectors and back-
bone networks, which can be considered as a Plug-and-Play
neck network.

To further demonstrate the superiority of our proposed
neck network IFA-FPN, we compare IFA-FPN with two
state-of-the-art neck networks i.e., Balanced Feature Pyra-
mid (BFP) [30] and Content-Aware ReAssembly of FEatures
(CARAFE) [31] in Table 6. Both BFP and CARAFE are
designed based on the original FPN architecture, and they
achieve better performance than FPN based on ResNet-50 in
GTSDB and STSD. Compared with BFP and CARAFE,
the proposed IFA-FPN still brings more substantial and con-
sistent performance gains in all traffic sign datasets GTSDB,
STSD, and TT100k. It is because BFP and CARAFE are
designed for detecting general objects rather than traffic
signs. BFP and CARAFE still mapped RoIs dispersedly in
different pyramid levels, which is demonstrated to be an
unprofitable factor for traffic sign detection in this paper. Due
to the GPU memory limitations, some results, such as BFP,
and ResNet-101 and ResNext-101 results in TT100k are not
provided, notated as ‘‘-’’.

D. COMPARISON PERFORMANCE
1) COMPARISON WITH FEATURE-BASED METHODS
We first compare our method with feature-based traffic sign
detectors wgy@HIT501 [4] and AdaBoost + SVR [2] in
GTSDB, and Fourier [5] and AdaBoost+ SVR [2] in STSD.
The above feature-based traffic sign detection methods [2],
[4], [5] did not use the complete GTSDB and STSD datasets
to evaluate their methods. Following the previous works [2],
[4], [5], we generate and notate these partial GTSDB and
STSD datasets as GTSDB† and STSD†, respectively.

The GTSDB† divided traffic signs in GTSDB into three
superclasses: Prohibitory signs (P.), Mandatory signs (M.),
and Danger signs (D.) though GTSDB provides 43 classes
in total. The STSD† only considered the visible traffic signs
in STSD with at least 50 × 50 pixels. Moreover, STSD†
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TABLE 9. Comparison experiments with state-of-the-art CNN-based one-stage or two-stage detectors.

only considered six main classes, including PEDESTRIAN
CROSSING, PASS RIGHT SIDE, NO STOPPING NO
STANDING, 50 SIGN, PRIORITY ROAD, and GIVEWAY.
Following the rules in [2], [4], [5], our proposed method
is performed and the results are reported in Table 7. For
GTSDB†, the performances are reported in the area under
the curve (AUC) of three superclasses. For STSD†, the per-
formances are reported in recall (Rec.), precision (Pre.), and
F1-measure (F1.).

As reported in Table 7, the feature-based methods
wgy@HIT501 [4] and AdaBoost + SVR [2] achieved bet-
ter performance than our method on small and fewer class
datasets GTSDB†. The wgy@HIT501 and AdaBoost+ SVR
considered that traffic signs within each superclass share
the same color and shape, therefore they recognized the
traffic signs by extracting their color HOG features. These
hand-craft feature-based methods work well in simple and
small datasets but they cannot achieve satisfying performance
on larger datasets STSD†. Our method outperforms other
feature-basedmethods on larger datasets STSD†. It is because
our method uses CNN to extract features. The hand-craft
features are not robust enough for learning discriminative fea-
tures to represent the general characteristics of traffic signs,
and therefore feature-based methods evaluate their methods
only using partial high-quality traffic signs or parts of classes.
Subsequently, we compare our method with CNN-based
traffic sign detection methods.

2) COMPARISON WITH CNN-BASED METHODS
Due to the evaluation metrics in several state-of-the-art stud-
ies are different, we reported the performance of our proposed
methods in two types of evaluation metrics in Table 8 and
Table 9. The methods in Table 8 are evaluated using recall
(Rec.), precision (Pre.), and F1-measure (F1.), and the
methods in Table 9 are evaluated using mAP.

As shown in Table 8, without bells and whistles, the pro-
posed neck network IFA-FPN greatly improves the perfor-
mance of Faster RCNN and Cascade-RCNN from 80.1% to
90.3%, and 85.6% to 89.0% in F1-measure for small-size
groups, respectively. The SSD [10] and MF-SSD [32] cannot
achieve satisfying performance because SSD-based detectors
need to reduce the original image resolution to a fixed and
smaller resolution before forwarding them to the network.

This zoom-out function declines the traffic sign detection
performance because it removes image information.

For fair and comprehensive comparisons among different
architecture, we performed all experiments in Table 9 under
the same hardware limitations in MMDetection on three
datasets. The results are reported in Table 9. We compare
our method with single-stage detectors SSD300, SSD500
[10] and YOLO [11], of which the input images need to be
resized to 300 × 300, 500 × 500, and 608 × 608 to fed
into them, respectively. Therefore, these single stage detec-
tors show poor performance in small and medium traffic
sign detection, which occupy big proportion in datasets. The
input image sizes of other methods are consistent with the
original image provided by datasets. Attention [14] has no
open-source implementation, hence we did not re-perform it
in the local computer, and directly use the results reported in
the paper. When our proposed IFA-FPN is applied to the Cas-
cade RCNN, the best performances are achieved by 80.3%
mAP in GTSDB, 65.2% mAP in STSD, and 93.6% mAP in
TT100k. Our proposed IFA-FPN consistently improves the
performance of Faster RCNN and Cascade RCNN by a large
margin in three datasets, which demonstrate the effectiveness
of the IFA-FPN in traffic sign detection.

To make straightforward illustrations of the superiority of
our proposed IFA-FPN, qualitative detection results on STSD
and TT100k by Faster RCNNwith FPN and our IFA-FPN are
shown in Fig. 5 and Fig. 6, respectively. The green bounding
boxes are the true positive (correct) detection, and the red
bounding box is the false positive detection. The predicted
class and confidence score of the traffic sign are written on
the boxes. We observe that the predicted bounding boxes by
IFA-FPN are well aligned with the ground truth of traffic
sign regions, which indicate IFA-FPN outperforms FPN in
both STSD and TT100k. On STSD, IFA-FPN can reduce
false positive detection shown in Fig. 5(b) and in Fig. 5(e).
IFA-FPN can detect occluded traffic signs shown in Fig. 5(c)
and in Fig. 5(f). On TT100k, IFA-FPN can perfectly detect
traffic signs with deformation caused by the camera dis-
tortion, while the FPN cannot generate well-fitting box for
deformed traffic signs or even cannot detect it. IFA-FPN can
detect traffic sign ‘io’ shown in middle of the third row of
Fig. 6, while the FPN failed. Moreover, IFA-FPN can always
output more confident (higher) scores than FPN for the same
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FIGURE 5. Qualitative results in STSD dataset. The first row (a-c) are the detection result of FPN, and the second row (d-f) are the detection result
of IFA-FPN. The sub-figures at the bottom of each image are zoomed in from the yellow boxes. The green boxes are the true positive (correct)
detection, and the red box is the false positive detection.

FIGURE 6. Qualitative results of the detection results by (a) Faster RCNN
with FPN and (b) Faster RCNN with IFA-FPN in TT100k.

target in both STSD and TT100k dataset. The illustrations
in Fig. 5 and Fig. 6 show that IFA-FPN gets more stable
results than the FPN.

V. CONCLUSION
This paper proposed a Plug-and-Play neck network called
IFA-FPN that can be applied in mainstream object detectors
to improve the performance of a traffic sign detector while
a similar inference speed is maintained. An integrated oper-
ation is introduced to overcome the size and class imbal-
ance problem in traffic sign datasets by integrating all scale
RoIs into a certain pyramid level. Three types of feature
aggregation structures are proposed and compared that can
enforce multi-scale features learning. The experiments have
been done to evaluate the performance of the proposed
method on three mainstream datasets including GTSDB,
STSD, and TT100k. The experimental results demonstrate
the superiority of the proposed IFA-FPN.

In the future, we will focus on light-weighting the network
to achieving superior performance in both accuracy and effi-
ciency, then we wish to integrate the proposed method in the
ADAS or ADS of a real vehicle.
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