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Abstract—Human pose estimation is a fundamental research
topic in computer vision. This topic has been largely improved
recently thanks to the development of the convolution neural
network. This paper introduces an efficient human pose estimator
based on Mask RCNN. It uses MobileNetV3 as backbone and
replaces the vanilla convolutions with the expanded depthwise
separable convolutions to reduce the model size, FLOPs and
inference time. The model can run in realtime speed at 25 FPS
with acceptable scores.

Index Terms—human pose, depthwise separable convolution,
RCNN, realtime

I. INTRODUCTION

The multi-person pose estimation problem is to recognize
and locate the position of key-points of all people in the image.
This task can be applied in many applications like 3D pose
estimation [8], [9], human-system interaction, human action
recognition/prediction, and video surveillance system.

Recently, the problem of estimation pose of all persons in
the image has been greatly improved by the development of
the convolution neural networks (CNN) [14]. For example, the
Convolution Pose Machine proposed by Cao et al. [2] tried to
locate the position of the key-point joints and the connection
between them which called part affinity fields (PAFs) in the
image. And then ensembles these joints into the full pose
of every people inside the image. The Stacked Hourglass
Network [17] uses a human detector to have the bounding
boxes of every people in the input image. Then, for each
person, it generates the score-maps for every key point by
using a stack of eight Hourglass modules. Mask-RCNN [6]
predicted the bounding box of all persons first, then warps the
feature maps based on these boxes to obtain the key-points for
the person inside.

This paper modifies the Mask RCNN to have a smaller
model, which can run in realtime speed. It uses MobileNetV3
[10] as backbone instead of Residual Network [7], and re-
places the vanilla convolutions with the depthwise separable
convolutions to reduce the model size, FLOPs and inference
time. Additionally, this paper introduces the expanded depth-
wise convolution to improve the performance of depthwise
convolution with small increment cost in model size, FLOPs
and inference time. The experiments show that the new model

can run in realtime speed at 25 FPS with acceptable mAP
scores.

II. RELATED WORK

Human pose estimation is a very active research field in
computer vision for decades. Classical approaches [4], [16],
[20], [25], [28] tackling this problem as a tree-structured or
graphical model problem and predict keypoint locations based
on hand-crafted features.

Recent works [1], [13], [17] mostly base on the convolu-
tion neural network (CNN) [14], which sharply improve the
performance of not only human pose estimation but also other
tasks in computer vision research. This paper mainly focuses
on methods based on CNN. This topic can be categorized as
single-person pose estimation which predicts the location of
joints of a human with given bounding box, and multi-person
pose estimation that requires further recognition of the poses
of all humans in the image. Because the multi-person pose
estimation task has a high demand for real-life applications,
it is gaining increasing popularity recently. The approach of
the multi-person case can be divided into two categories: the
bottom-up approach and the top-down approach.

Bottom-up approach. Methods that use bottom-up ap-
proach will directly predict all key-points at first and then
ensemble them into full poses of all persons in the image.
Cao et al. [2] encoded the relationship between key-points
by using part affinity fields (PAFs) and assemble detected
key-points into full poses of different people. This method is
integrated into the OpenPose library. DeepCut [21] translated
the problem of separating key-points of different people in
an image as an Integer Linear Program (ILP) problem. They
firstly partitioned the part candidates into person clusters, then
combined these clusters with labeled body parts. DeeperCut
[13] is an improved version of DeepCut by employing image-
conditioned pairwise terms and a deeper ResNet [7] as the
backbone network to get better performance.

Top-Down approach. Methods that use top-down approach
will interpret the process of estimating pose of all people as
a two-step pipeline. That is, firstly detect the bounding box
for persons in the image, and then solve the single person
pose estimation problem in the cropped patches that based on
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the corresponding bounding boxes. Mask-RCNN [6] predicts
human bounding boxes first, and then predict human key-
points based on the cropped feature map of the corresponding
bounding box. Papandreou et al. [18] predict both heatmaps
and offsets of the points on the heatmaps to the real positions,
and then uses both of them to obtain the final predicted
location of key-points.

This paper modifies the Mask RCNN to have smaller model,
which can run in realtime speed. It uses MobileNetV3 [10]
as backbone instead of Residual Network [7]. Moreover, the
vanilla convolutions are replaced by the depthwise separable
convolutions to reduce the model size, FLOPs and inference
time. Additionally, this paper introduces the expanded depth-
wise convolution to improve the performance of depthwise
convolution with small increment cost in model size, FLOPs
and inference time. The experiments show that the new model
can run in realtime speed at 25 FPS with acceptable scores.

III. OUR APPROACH

A. Expanded Depthwise Separable Convolution

1) Depthwise Separable Convolution: Nowadays, there are
many efficient neural network architectures [3], [11], [24], [29]
use Depthwise Separable Convolutions (DWConv) as the key
building block. The basic idea of DWConvolution is to replace
a standard convolutional layer with two separate layers. The
first layer uses a depthwise convolution operator. It applies
a single convolutional filter per input channel to capture the
spatial information in each channel. Then the second layer
employs a pointwise convolution, which is a 1×1 convolution,
to capture the cross-channel information.

Suppose the input tensor Li has size h×w×di, the output
tensor Lj has size h× w × dj . So, the standard Convolution
needs to apply a convolutional kernel K ∈ Rk×k×di×dj ,
where k is the size of kernel. Therefore, it has the computation
cost of h · w · di · dj · k · k.

In case of DWConv, the depthwise convolution layer costs
h · w · di · k · k and the 1 × 1 pointwise convolution costs
h ·w · di · dj . Hence, the total computational cost of DWConv
is h · w · di · (k2 + dj). Effectively, the computational cost of
DWConv is smaller than the standard Convolution by a factor

of
k2 · dj

(k2 + dj)
. The transformation of DWConv is shown in

Table I.
2) Expanded Depthwise Separable Convolution: This paper

introduces an upgraded of DWConv called Expanded Depth-
wise Convolution (EDWConv). Instead of applying a single
convolution filter per input channel, it applies e convolution
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filters per input channel to capture multiple spatial information
in each channel. Similar to DWConv, it is followed by a point-
wise convolution to capture the cross-channel information.

About the computation cost of EDWConv, the expanded
depthwise convolution costs h · w · e · di · k · k and the 1× 1
pointwise convolution costs h ·w ·e ·di ·dj . Therefore, the total
computational cost of EDWConv is h ·w ·e ·di · (k2+dj). Ef-
fectively, the computational cost of DWConvolution is smaller

than the standard Convolution by a factor of
k2 · dj

e · (k2 + dj)
.

Table II illustrates the transformation of EDWConv.

B. Network Architecture

As shown in Fig. 1, the proposed model consists of four
parts: the MobileNetV3 [10] as the feature extractor, the RPN
to extract the proposals bounding box, the Detection Network
to predict the final bounding boxes of all human inside the
input, and the Key-points Estimation Network to generate the
key point positions of the person inside.

MobileNetV3 [10] is an improved version of MobileNet
[11] and MobileNetV2 [24]. It uses inverted residual blocks
combined with incorporates squeeze-and-excitation blocks
[12] as part of the search space. Its architecture is found out by
adopted two AutoML techniques: MnasNet [26] and NetAdapt
[27]. MobileNetV3 first searches for a coarse architecture
using MnasNet, which uses reinforcement learning to select
the optimal configuration from a discrete set of choices. After
that, the model fine-tunes the architecture using NetAdapt, a
complementary technique that trims under-utilized activation
channels in small decrements.

Faster RCNN [22] has two parts: the RPN subnet for
generating the box proposals, and then, for each proposal, it
uses using a region of interest pooling (ROIAlign) operator
to extract a fixed-size feature vector from the feature map
provided by the network backbone (MobileNetV3 in this
paper). Each feature vector is fed into a sequence of fully
connected layers (Detection Network) that finally refine the
proposals to get better bounding box and classification results.

Key-points Estimation Network use the bounding boxes
generated from Faster RCNN to adopt the ROIAlign operator
to extract a fixed-size feature vector from the feature map
provided by the network backbone. Each feature vector is fed
into a sequence of convolution layers (which can be vanilla
Convolution, DWConv, EDWConv).
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Fig. 1. Overview architecture of the proposed model. It has four parts: the MobileNetV3 [10] as the backbone, the RPN to extract the proposals bounding
box, the Detection Network to predict the bounding boxes of all human inside the input, and the Key-points Estimation Network to generate the key point
positions.

IV. EXPERIMENTS

A. Implementation Details

The proposed model is trained on the Coco dataset [15].
This dataset is composed of 118k images (train2017) for
training and 5k images (val2017) for validation. This dataset
can be used for many tasks, e.g. human pose estimation, object
detection. For human pose estimation task, there are 17 joints
are annotated. They are: nose, right/left shoulder, right/left
elbow, right/left wrist, right/left hip, right/left knee, right/left
ankle, right/left eye, and right/left ear.

For the MobileNetV3 backbone, a pre-trained model that al-
ready trained on ImageNet [23] dataset is used. The remained
parameters of RPN, Detection Network, Key-points Estimation
Network are initialized by Xaviers initializer [5].

All the input images are resized to 320 × 320 pixels. The
network is trained using Pytorch [19] and for optimization,
the SGD optimizer with a learning rate of 2e-2 is used. The
models are trained on a server with a Core i7-8700K 3.70GHz
CPU, 32-GB RAM, and 2 NVIDIA Titan RTX GPU devices
for 90,000 iterations. The learning rate is dropped once by a
factor of 10 at epochs of 60,000 and 80,000.

B. Experiment Results

Table III shows the AP, AR scores and speed of proposed
models with several kinds of convolution: vanilla Convolution,
Depthwise Separable Convolution, Expanded Depthwise Sep-
arable Convolution for the Key-points Estimation Network on
Coco dataset.

As can be seen, after replacing vanilla convolutions with
depthwise separable convolution, although the AP and AR
scores are downgraded (from 46.1 and 54.8 to 37.8 and 46.4,

respectively), the speed of network is double. It can achieve
25.2 FPS with acceptable scores, good enough for the realtime
application. When adopting the expanded depthwise separable
convolution to the Key-points Estimation Network, the model
is a little bit slower (25.2 FPS down to 25 FPS) but can have
approximately 1% score increasing in both AP and AR.

Some visual examples of multi-person poses predicted by
the proposed model are shown in Fig. 2. As you can see, the
proposed model can generate good poses for all people inside
the input image.

V. CONCLUSION

This paper modifies the Mask RCNN to have smaller model.
It uses MobileNetV3 as backbone instead of Residual Network
and replaces the vanilla convolutions with the expanded depth-
wise separable convolutions to reduce the model size, FLOPs
and inference time. The experiments show that the new model
can run in realtime speed at 25 FPS with acceptable AP and
AR scores.

In the future, it is necessary to improve the performance
of the model. Additionally, this model should be further
optimized to be faster.
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