High Performance and Efficient Real-time Face
Detector on CPU Based on Convolutional Neural
Network

Abstract—Face detection is crucial in the development of face
recognition, expression, tracking, and classification. Conventional
methods have accuracy constraints on several challenging con-
ditions, including non-frontal faces, occlusions, and complex
backgrounds. However, the Convolutional Neural Network (CNN)
methods produce high performances despite a large amount
of computation. Therefore, CNN requires expensive hardware
and is not suitable for low-cost CPUs. This study develops
a light architecture for a CNN-based real-time face detector.
The proposed architecture consists of two main modules, the
backbone to extract distinctive facial features and multi-level
detection to perform prediction at multiple scales. Furthermore,
it utilizes several approaches to enhance the training result,
including balancing loss and tweaks on the training configuration.
The proposed detector has one stage and is trained using the
input of images from WIDER FACE with challenges, which
contains more challenging images than other datasets. As a result,
the detector achieves state-of-the-art performance on several
benchmark datasets compared with the other CPU-based models.
Then, its efficiency is superior to that of competitors, as it runs
at 53 frames per second on a CPU for Video Graphics Array
(VGA) resolution images.

Index Terms—Convolutional neural network (CNN), central
processing unit (CPU), face detector, real-time, light architecture.

I. INTRODUCTION

ACE detection is a vision technology that can detect and

localize the presence of human faces in an image. In
addition, it is an essential method of face recognition, ex-
pression, tracking, and classification. For practical application,
such methods must operate in real-time [!], [2]. However,
approaches with high accuracy tend to be implemented on
expensive devices that can provide the require high computa-
tion. Lightweight face detection is the solution to a real-time
application without loss of the performance of the detector.
Therefore, real-time face detection involves a trade-off be-
tween speed and accuracy [3]. The usability of such a method
will be increased when it can be implemented on a low-cost
device or CPU.

A robust real-time face detection method has been in-
troduced to find local features of faces in a whole image
region [4]. The conventional method recognizes facial features
using Haar-like features and AdaBoost as a classifier. Small
faces, occlusions, non-frontal faces, and complex backgrounds
are the weaknesses of this method, though it has superior
computation efficiency [5]. These problems can be solved by
Convolutional Neural Networks (CNN) methods for object de-
tection. The CNN is a powerful method for extracting features
and detecting objects [6], [7]. Several CNN architectures are
proposed to solve real-time object detection problems [8], [9],

[10]. Various anchor scales are assigned to predict the location
and size of the bounding box. These networks are references
for object detection because they achieve high performance.

Learning-based methods for detecting specific object fea-
tures of an image show success when assigned to identify
facial features [!1], [12]. However, the high performance of
CNN is decreases efficiency when implemented on the CPU.
This problem requires several CNN methods to function only
on GPU [13], [14], [15]. High computing resource does not
allow the deep CNN to work on a CPU. Hence, CNN with
shallow layers is more efficient but shows drastically reduced
performance. FaceBoxes [16] and Densely Connected Face
Proposal Network (DCFPN) [17] successfully detect faces
in real-time on CPU. FaceBoxes uses an architecture CNN
to reduce the dimensions and extractions of feature maps
in Rapidly Digested Convolution Layers (RDCL). Multiple
Scale Convolution Layers (MSCL) predicts multiple scales
of faces and achieves excellent trade-off between speed and
accuracy. Optimization of this trade-off is the main goal of
this study. The proposed architecture contains shallow layers
that involve sub-modules and additional strategies to prevent
loss of accuracy.

The proposed detector offers CNN-based real-time face
detection with several fully convolutional layers. In addition,
this work focuses on improving the performance and efficiency
of real-time face detection on a CPU. The contributions are
as follows:

1) A light architecture for CNN to detect faces that can
operate in real-time. This network consists of two main
modules, a backbone to extract distinctive facial features
and a multi-level detector to predict the location of faces
with scale variations.

2) The detector achieves state-of-the-art performance
among the CPU real-time detectors tested on several
benchmarks, including Annotated Faces in the Wild
(AFW) [18], PASCAL face [19], Face Detection Data
Sets and Benchmarks (FDDB) [20], and WIDER FACE
[21].

3) The efficiency of a detector is superior to that of other
competitors, as it runs at 53 FPS on the CPU.

This paper is organized as follows: Section II explains the
proposed architecture. Section III describes the strategy and
implementation setup of the architecture in the neural network
framework. Section IV contains the experiment and results.
Finally, conclusions and future work are presented in Section
V.
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Figure 1. The proposed architecture consists of two main modules of the backbone to extract facial features using CNN and a multi-level detector to predict
faces on multiple scales. Inception is applied to the stem block as a crucial module. The architecture consists of 30 layers of CNN and produces one million

parameters.

II. FACE DETECTOR ARCHITECTURE

This section discusses the architecture of the real-time face
detector. The main modules consist of backbone and predictor,
as shown in Fig. 1. The proposed architecture emphasized
the improvement of data processing speed and maintained
detection accuracy.

A. Backbone Module

The CNN-based feature extraction method for face detection
has shown high performance. Rather than a fast data process-
ing speed, deep CNN requires high computation. The detector
backbone uses a shallow layer to reduce and extract the spatial
input size. The most critical parts of this module are as follows.

1) Shrink block: The shrink block quickly reduces spatial
input without losing feature information. The proposed de-
tector shrinks the size and extracts the feature map at the
different stages [22]. Hence, this block focuses on reducing
the feature map to avoid heavyweight extracted features on
large feature maps. All layers in the module are convolution
layers aimed at maintaining the quality of feature information
before transferring it to the stem block. Four CNN series work
to reduce the size of the feature map to 32 times smaller
than the input, as shown in Fig. 1. This block uses a 5 X
5 kernel in the first convolution layer and the 3 X 3 in the
rest. A large filter at the beginning of the process is useful
for quickly reducing the feature maps. The stride size of each
convolution is 4, 2, 2, and 2, with 128 channels of the last
feature map. Batch normalization is used at the end of all
convolution operations to accelerate and convergence training.

Then, rectified linear units (ReLU) is utilized to activate the
output linearly for positive scores.

2) Stem block: The stem block is a crucial module to
extract facial features comprehensively. Therefore, this block
uses four mini-inception series that are smaller than the
original inception. The inception block has shown satisfying
results when assigned to extract object features [23]. The
receptive field of this block is richer than the standard convo-
lution. However, this module produces light weights to capture
different scales of faces. Most works have shown the inception
module to be capable of operation in real-time for object
detection and classification [24], [25]. Although the detector
does not use large kernels or many branches, the stem block
can produce a clear feature map. The simple characteristics
of facial features support the efficient use of shallow layers.
Instead of using one block, a high-performance extraction
is achieved. Each block simultaneously processes a set of
convolution and pooling operations. Fig. 1 shows that the
mini-inception consists of three branches, including a 1 x 1
convolution, a 3 X 3 convolution, and a combination series of
pooling and 1 X 1 convolution. Then, a concatenation block
plays a role in combining the output of the branches.

B. Detection Module

There are many methods to predict candidates of region
proposals with different sizes of the object. The proposed de-
tector implements a pyramidal feature hierarchy using multiple
detection layers by grouping predictions according to scale.

1) Transition block: The transition block transforms feature
map sizes between prediction layers. This module contains
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Figure 2. Examples of anchor densification strategies for anchor types are 32
X 32 (a), 64 X 64 (b), and 96 X 96 (c). The anchor unit is in color. The anchor
interval shows the distance between neighbor anchors of the same type.

simple blocks to retain information of feature maps. Instead
of using pooling to reduce the size of the feature map,
convolution with stride two is used for more powerful. The
block adopts the depthwise separable convolution [26] as an
extractor and a 3 X 3 kernel for decreased feature map size.
The depthwise separable convolution utilizes a combination
of 3 x 3 depthwise convolution and 1 X 1 pointwise con-
volution. This combination is simple but more robust than 1
X 1 convolution. The feature map size decreases in inverse
proportion to channel size. Finally, the block splits into three
layers for prediction at different scales, followed by a single
sub-convolution to produce predictive offsets.

2) Multi-level detection: Multi-level detection is used to
predicts multiple scales of faces. This module addresses the
problem of using a single predictor [8]. A single predictor has
a weakness of inconsistency between the fixed receptive field
and the objects at different scales. Therefore, this technique
ignores information on small face features due to overprocess-
ing in the dimension reduction step. In addition, the Feature
Pyramid Network (FPN) requires additional computation [9].
The pyramidal feature hierarchy is used to overcome these
problems. The predictor adjusts the size of the feature map
and anchor according to face size. Then the module is divided
into three levels for the prediction layer. The first layer is
responsible for small, the second layer for medium, and the last
layer for large faces. The size of the feature map prediction is
32, 16, and 8§, respectively. Different anchor types will occupy
each prediction layer according to the assignment of the face
scale.

C. Anchor Strategy

The proposed detector predicts bounding boxes based on
dimensional clusters using anchor boxes. Instead of assigning
one type of anchor box, which cannot represent multiple-scale
faces, the proposed detector adopts the anchor density strategy
to increase the recall of small faces [17]. This strategy applies
adjacent anchors of the same type that correspond to intervals
based on the center point of the receptive field. In contrast to
the original version, anchor scale 96 is employed to reduce the
gap of the anchor type on small faces. Various types of anchors
with a 1:1 ratio occupy different prediction layers according
to scale assignment. Based on this strategy, the detector only
implements the first prediction layer to predict small faces by

employing small anchors, including the anchor scales of 32,
64, and 96, with anchor numbers of 9, 4, and 4, respectively
(see Fig. 2). On the other hand, a single default anchor is
assigned to each prediction layer, including 128, 256, and
512, respectively. The strategy is ignored for large-scale anchor
types to avoid additional computation.

III. TRAINING SETUP AND STRATEGY

In general, the neural network requires comprehensive
training to produce high performance. In this section, the
loss function, training dataset, augmentation, and parameter
settings are introduced to optimize the training process.

A. Balanced Loss Functions

The proposed network generates prediction offsets, includ-
ing regression (x, y, w, and &) and classes (face and none).
The proposed detector adopts the parameterizations of the four
coordinates for the regression bounding box [8]. Generally,
neural networks use the loss function to quantify the inaccu-
racy between the predicted value and ground truth. The loss
function emphasizes the performance of weight neurons to
minimize errors. In object detection, multi-loss is defined as
a combination of regression and classification loss. The two
objective losses often are imbalanced, so the network tends to
work hard on one side. The proposed detector uses a balanced
loss to overcome this problem. The loss function associates
each error generated by the training network with an anchor
box. The loss function of multi-boxes detector is defined as:

a * ﬁ *
L(efutf) = 5 D Laas(eloe)) + 5 3 Lioel ). (1)
i i

where tf is a set of four coordinate vectors from the predictor
location for each i-th anchor and class p, t; is the ground
truth box, cf is the prediction class, and ¢} is the ground truth
label. The denominator N is the number of matched default
boxes and then can be paired with two parameters, @ and S,
as the balancer of the two objective losses. Lcls(cf7 ,¢;) is the
softmax-loss as classification loss, defined as [10]:

Lclx(cl’?,c:f) =- Z x{)Log(cf) - Z Log(c?), 2)

iePos ieNeg

where xlp is [1,0] as an indicator for matching the i-th anchor
to ground truth, and c? is the confidence score for classifiying

non-objects. On the other hand, Huber loss defined by [27] is
the regression loss detector:
Lioel )= > HG =1, (3)
ie{x,y,w,h}
in which
0.5x2 if |x] < 1
H(x) = . “)
|x|] = 0.5 otherwise

is a robust loss to minimize tuning errors of learning rates
during training. This loss function gives a smooth effect when
the input value is less than 1. Furthermore, o and g are preset
to respectively 2 and 1 to produce optimal training.



B. Training Dataset and Augmentation Data

WIDER FACE is a face detection benchmark dataset used
as a training dataset on the proposed detector. This dataset
contains 32,203 images, with only 12,800 in the training
category for detector knowledge to recognize facial features.
Augmentation is used to enrich the variety of training data
and prevent overfitting in the training process [!7]. This stage
consists of sequential processes of color distortion, random
cropping, scale transformation, and horizontal flipping. Fi-
nally, 1024 x 1024 is the final size of the training sample
after augmentation.

C. Implementation Details

The detector model is implemented in the PyTorch frame-
work, which involves several optimization settings. At the
beginning of the training, random weights are initialized at
all network layers through end-to-end training. Stochastic
Gradient Descent (SGD) is used to optimize weights for each
neuron through back-propagation. The optimizer parameters
are 5-107% weight decay, 0.9 momentum, and learning rate
variations at different epochs. The first 200 epochs are applied
alo™3 learning rate, the next 50 at a 104 learning rate, and the
last 50 at a 107> learning rate. The entire dataset is divided into
small partitions with a batch size of 32. In the anchor matching
process, a set of overlapping anchors is matched with ground
truth by the biggest IoU (Intersection over Union). Finally, the
best anchor with a threshold of greater than 0.5 is selected.

IV. EXPERIMENTS

This section discusses the performance and efficiency of
the proposed architecture by analyzing the architecture in
an ablative study and on the face detection benchmarks,
examining the runtime efficiency, and testing it on low-cost
devices.

A. Model Analysis

The performance of the proposed detector is comprehen-
sively tested using ablation experiments. The architecture is
gradually replaced by module and analyzed for accuracy and
speed to determine the strength of each module. This exper-
iment uses the same training strategies except for specified
changes to the architecture. Table I shows that almost all
proposed modules have a positive impact on improving perfor-
mance. For example, the multi-level detection module signifi-
cantly increases accuracy by 5.9% and simultaneously reduces
speed by 0.48 ms. This result is more robust than that of single
detection of multiple scales of the face. On the other hand,
the stem block with a mini-inception significantly increases
accuracy by 3.5 ms, but detector performance decreases by
0.6%. In this experiment, mini-inception is replaced by the
original inception. This block uses a parallel configuration
with various small kernels to increase efficiency. Without
compromising a detector speed, the proposed modules improve
detector performance.

B. Evaluation on Benchmark

This section presents the evaluation of the proposed detector
on benchmarking datasets of AFW, PASCAL face, FDDB, and
WIDER FACE. It also compares the performance with that of
competitors.

1) AFW dataset: The AFW dataset consists of 203 images
with 473 labeled faces from Flickr. This dataset contains
a variety of backgrounds and challenging faces based on
position, accessories, and expression. The performance result
is compared with that of previous works (commercial and
research), as illustrated in Fig. 3 (a). The detector performance
is superior to others, even 0.28 better than FaceBoxes, the
leading competitor. Multiple faces with diverse challenges can
be detected, as shown in Fig. 6 (a).

2) PASCAL face dataset: The PASCAL face dataset con-
sists of 851 images with 1,335 labeled faces. This dataset
is a subset of the PASCAL VOC dataset containing pose
and background variations (indoor and outdoor). Fig. 3 (b)
shows that the proposed detector is significantly superior to
others. It has 1.02 higher accuracy compared with FaceBoxes.
Qualitative results in this dataset are shown in Fig. 6 (b).

3) FDDB dataset: The FDDB dataset consists of 2,845
images containing 5,171 faces of famous people. The dataset
collects the images from Yahoo websites and includes various
challenges of position, lighting, and background. The proposed
detector can overcome these challenges, even with the occlu-
sions (see Fig. 6 (c)). The dataset is evaluated on discrete
criteria by comparing the intersection of the detection results
and the annotated faces. The score will be one if the ratio is
higher than 0.5 and O otherwise. The detector achieves state-
of-the-art accuracy compared to competitors working on real-
time CPUs (i.e., FaceBoxes, DCFPN), as illustrated in Fig. 4.
Although HE-ER [13] and SFD [28] have better performance
compared to the proposed detector, these detectors are not
feasible for real-time performance on a CPU as the deep
architecture of CNN produces a large number of parameters.

4) WIDER FACE dataset: The WIDER FACE dataset con-
tains many challenges that are more difficult than other bench-
mark datasets, such as variations in scales, poses, expressions,
occlusions, and lighting conditions. This dataset is divided into
training (40%), validation (10%) and testing (50%) sets. The
validation and testing sets contain three levels of difficulty,
easy, medium, and hard. Hard level means that there are
many tiny faces. The proposed detector has a performance of
0.883 (easy), 0.868 (medium), and 0.730 (hard) on validation
sets, while the testing sets are 0.883 (easy), 0.863 (medium)
and 0.717 (hard). Fig. 5 shows that the proposed detector is
more excellent to FaceBoxes, the main competitor on the easy
and medium validation and testing sets. It is inferior for the
hard category because the low-layer features are not powerful
enough to predict tiny faces. Superficial feature extraction
result in weak distinction between small faces and background
features. The proposed detector is less accurate than ScaleFace
[29] on the medium difficulty testing sets, but the competitor
is heavy for use on CPU devices (See Table II). Based on the
qualitative results in Fig. 6 (d), the detector achieves strong
performance when overcoming the challenging images.



Table I

ABLATIVE RESULTS ON FDDB DATASETS. THE MAXIMUM NUMBER

OF FALSE POSITIVES IS 1,000. THE SPEED MODEL IS TESTED ON THE

VGA-RESOLUTION IMAGES ON THE CPU.

Modules Proposed detector
Balancing loss vV
Anchor strategy Y v
Transition block Y vV v
Multi-level Detection vV vV v v
Shrink block Vv vV v v v
Stem block vV vV v v v Y
Accuracy (AP) 0.970 | 0.967 | 0.964 | 0.963 | 0.904 | 0.895 | 0.901
Speed (ms) 18.87 18.86 18.20 | 18.10 | 17.62 | 16.93 | 20.42
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Figure 3. Evaluation on the AFW dataset (a) and the PASCAL face dataset based on Average Precision (AP) (b).
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Figure 4. Evaluation on the FDDB dataset based on discrete ROC (Receiver
Operating Characteristics) curves.

C. Runtime Efficiency

In general, CNN-based face detectors can be accelerated
using GPU, but the practical applications demand operation
on CPUs with lightweight computing. Overall, the proposed
architecture generates 989,832 parameters, less than that of the
general architecture of CNN for object detection. The detector
is tested on a VGA-resolution image (640 x 480 pixels) that
is the same as for other competitors. At the 0.05 confidence

RUNTIME EFFICIENCY COMPARED TO DIFFERENT ARCHITECTURES. SPEED
OF ALL DETECTORS IN VGA-RESOLUTION IMAGES ON CPU.

Architecture CPU GHz | AP (%) | FPS
ACF Intel 17-3770 3.40 85.20 20
CasCNN Intel E5-2620 2.00 85.70 14
FaceCraft N/A N/A 90.80 10
STN Intel 17-4770K 3.50 91.50 10
MTCNN [14] N/A 2.60 94.40 16
ScaleFace [29] N/A N/A 96.00 7
DCFPN [17] Intel E5-2660v3 | 2.60 95.40 30
ICC-CNN [30] N/A N/A 96.50 12
FaceBoxes [16] Intel E5-2660v3 | 2.60 96.50 28
FaceBoxes [16] Intel 15-6600 3.30 96.50 39
Proposed detector | Intel I5-6600 3.30 97.00 53

threshold, a set of positive anchor boxes is selected using a
Non-Maximum Suppression (NMS) of 0.3 to produce final
bounding boxes. Experiments are conducted on the following
hardware: Intel Core 15-6600 CPU @ 3.30 GHz, 8§ GB RAM.
The detector works in real-time with a processing speed
of 53 FPS and achieves state-of-the-art accuracy compared
with other CPU real-time detectors. FaceBoxes, as the latest
competitor, is slower than the proposed model on the same
devices. Table II shows the accuracy of each architecture
based on Average Precision (AP) as a metric with 1,000 false
positives on the FDDB dataset.

Efficiency comparisons are also performed with different
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Figure 5. Evaluation on the WIDER FACE validation and testing sets.
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Table III

input frame scales based on a standard computer display.
The FPS detector graph is proportional to the sizes of the
input frame. The small frame size allows higher speed but

THE REAL-TIME TESTING ON LOW-COST DEVICES

Devices GHz | Resolution | RAM(GB) FPS
is detrimental to performance and vice versa. Fig. 7 shows }Detrslogal angg(t)e(:)r 33 640 x 430 | 8 2,86
that the proposed detector outperforms FaceBoxes at all input 1\111 ‘E 5 Of i
. oteboo!
Sf:alc?s. The QQVGA (Quarter Quarter YGA) re.solutlon shows AMD A6-1450 224 14 640 x 480 | 4 10.10
significant differences form the competitor, while the smallest Lattepanda 14 640 x 450 | 4 576
difference is with FULL HD (High Definition) resolution. gtel Eheny."gr]gﬂ ' '
aspberry pi
Broadcom BCM2837 1.2 640 x 480 2 2.15

D. Real-time Testing on Low-cost Devices

The real challenge of computer vision is the implementation

of practical applications. Both performance and speed are
essential metrics when a model is working in real-time.
However, compared to expensive devices, low-cost devices are

widely used for practical applications. Table III shows that
the detector is tested on several inexpensive devices with a
retail price lower than 300 USD, excluding GPU. The input
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of real-time testing is 1,000 frames from a webcam. The de-
tector can operate in real-time on these devices with different
speeds depending on the processor size of the computer. The
slow detection speed on a raspberry CPU is due to the low
execution speed. The proposed real-time system produces less
computation and can work at a decent rate when tested on
the CPU. The architecture is designed to lean by emphasizing
the number of shallow channel layers for each convolution
operation.

V. CONCLUSION

This paper presents a real-time face detector based on CNN
using a light architecture that can work on CPUs with high
performance and efficiency. The architecture consists of two
main modules, a backbone, and a multi-level detector. The
balancing loss and training strategies are used to improve
the quality of neuron training. This architecture requires less
computation cost compared to the general architecture of
CNN-based object detection by producing fewer than one
million parameters. Finally, the experiment shows that the
proposed detector achieves state-of-the-art performance on the
standard face detection benchmarks. In addition, the efficiency
of the proposed model is superior to that of competitors by
53 FPS in real-time on a CPU. In future work, the usage of
anchors in the object detector improves the accuracy, but it

needs more computation power. An anchor-free method can
be applied to increase speed and maintain performance.
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