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Abstract—This paper studies one-stage 3D object detection
based on LiDAR point clouds and RGB images that aims to
boost 3D object detection accuracy based on three attention
mechanisms. Currently, most of the previous works converted
LiDAR point clouds into bird’s-eye-view (BEV) images, achieving
significant performance. However, they still have a problem
due to partial height information (z-axis value) loss during the
conversion. To eliminate this problem, the height information
of the LiDAR point clouds is projected onto an RGB image
and embedded into the original RGB image to generate a new
image, named RGBD. This is the first attention mechanism to
improve 3D detection accuracy. Moreover, two other attention
mechanisms extract more discriminative global and local fea-
tures, respectively. Specifically, the global attention network is
appended to a feature encoder, and the local attention network is
used for the view-specific region of interest (ROI) fusion. Massive
experiments evaluated on the KITTI benchmark suite show
that the proposed approach outperforms state-of-the-art LiDAR-
Camera-based methods on the car class (Easy, Moderate, Hard):
2D (90.35%, 88.47%, 86.98%), 3D (85.12%, 76.23%, 74.46%),
and BEV (89.64%, 86.23%, 85.60%).

Index Terms—One-stage, 3D object detection, three attention
mechanisms, LiDAR, camera.

I. INTRODUCTION

W ITH the rapid development of autonomous vehicles,
three-dimensional (3D) object detection has become

more important. 2D object detection only analyzes what the
objects are and where they are in the 2D image. However,
autonomous vehicles have to analyze road targets and their
accurate locations in real time. Achieving accurate and real-
time 3D object detection is a huge challenge. Currently, 3D
object detection mainly get 3D data from either LiDAR or
camera.

Recently, 2D object detection [1]–[3] with deep learning
has drawn much attention. Most researchers study 3D object
detection based on LiDAR point clouds using 2D detection
methods. Point clouds generated by LiDAR are sparse and
irregular. Hence, representative studies either convert point
clouds into 2D front view images [4], 2D bird’s-eye-view
(BEV) images [5], or structured voxel-grid representations [6],
[7]. Then, 2D convolutional layers are used to extract features
from the converted images. Some point-based methods [8], [9]
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directly utilize multi-layer perceptron (MLP) to aggregate fea-
tures from point clouds. However, LiDAR-based approaches
suffer 3D information loss in distant regions due to the sparsity
of the point clouds. Compared with point-based methods [8],
[9], the BEV-based method [5] is a little faster, however, it
suffers partial information loss during the conversion. This
work employs the RGBD image to reduce the information loss.

2D RGB images possess dense texture, and high-resolution
images have enough cues for small objects. However, it is
difficult to extract accurate 3D localization features when using
monocular images due to the lack of depth information [10]–
[12]. Currently, even if stereo images are used [13], the accu-
racy of the estimated depth is not guaranteed. Therefore, some
studies [4], [14]–[16] take mutual advantage of 2D images and
point clouds to achieve accurate 3D object detection. These
methods directly fuse the view-specific features by a common
concatenation [4] or an element-wise mean operation [14],
resulting in poor accuracy of 3D object detection. This paper
adopts the region of interest attention (RA) fusion mechanism
to deeply merge the view-specific features.

MV3D [4] and AVOD [14] adopt the two-stage frameworks
to detect 3D objects based on point clouds and RGB images.
The first stage generates 3D proposals, and the following stage
refines the proposals to predict 3D objects. Compared with
the one-stage method, the two-stage 3D detection model is
relatively time-consuming. Therefore, some works [15] [16]
utilize the one-stage framework to detect 3D objects. Without
the second stage to refine 3D proposals, the above one-stage
works yield a worse detection accuracy than the two-stage
methods. After analysis, enhancing the feature representation
of one-stage methods is the most effective way to improve
3D object detection. Hence, a global feature attention (GFA)
mechanism is used for boosting global feature representation.

To overcome the above drawbacks, this paper presents a
novel one-stage 3D object detection framework, as shown in
Fig. 1, based on three-attention mechanisms, called TAO3D,
which takes raw point cloud and RGB image as inputs. Three
attention mechanisms are used to obtain discriminative fea-
tures. First, the height attention (HA) mechanism is introduced
as an auxiliary attention module before the RGB image is
fed into a network. Second, a global feature attention (GFA)
mechanism models the long-range dependencies in the channel
and spatial dimensions simultaneously at the feature extraction
phase. Finally, a region of interest attention (RA) mechanism
weights RGB image ROIs and BEV ROIs using two learnable
parameters.

The main contributions of this framework are summarized
as follows:



2

Fusion

Weighted ROIs 
Fusion (RA)

Multi-sensor Inputs 3D Object Detection Networks

Crop &
Resize

Crop &
ResizeEncoder Decoder

Encoder DecoderGFA

GFAN

Classification

3D Box 
Regression

FC & 
NMS

Orientation 
Regression

Projection

Original Image

���� Image

Raw Point Clouds

BEV Image 

Encoder DecoderGFA

Predefined  3D Anchors
Projection

Proposals

(Filter Empty 
Anchors)

Figure 1: The architecture of a one-stage 3D object detection network based on LiDAR and camera. The model first employs
two sibling branches to extract the features from RGBD images and BEV images, respectively. Second, the prior anchors
have filtered the empty anchors, and then projected onto RGBD feature maps and BEV feature maps to crop equal length
view-specific ROIs. Finally, the fused ROIs are utilized for classification and regression. Best viewed with color.

1) It takes the raw LiDAR point clouds and RGBD images
as inputs instead of the RGB image. RGBD images
contain the height information from point clouds.

2) The GFA mechanism captures the feature dependencies
in both the channels and spatial dimensions at the feature
extraction stage and makes the features much more
discriminative.

3) The RA mechanism weights the paired BEV ROIs and
RGB image ROIs firstly and then fuses them using the
addition operation. This gives more weight to important
features.

The proposed one-stage 3D object detection framework
outperforms state-of-the-art LiDAR-Camera-based methods on
the KITTI benchmark [17].

II. RELATED WORK

This section mainly reviews the related works for 3D object
detection based on LiDAR and camera, and the attention
networks for computer vision tasks.

A. LiDAR-Camera-Based 3D Object Detection

MV3D [4] first introduced multi-modality (RGB image,
front image, BEV image) 3D object detection with three back-
bones to extract view-specific features. Compared with MV3D
[4], AVOD [14] only takes RGB images and BEV images as
inputs to reduce model runtime. Both MV3D and AVOD make
use of a two-stage 3D object detection framework. To speed
up training and inference, AVOD-SSD [15] and [16] adopt a
one-stage 3D object detection framework. The models run a
little faster than AVOD [14], but both the performances greatly

drop. In the first step, the proposed work enhances the one-
stage detection framework with the RGBD images at the input
phase of the RGB image.

B. Attention Networks

Attention modules model long-range dependencies and have
been widely applied in segmentation tasks [18], [19]. DANet
[18] introduces a self-attention mechanism to capture rich con-
textual dependencies for scene segmentation, which models
the semantic interdependencies in the channels and spatial
dimensions, respectively. CBAM [20] sequentially infers atten-
tion maps along two separate dimensions, channel and spatial,
then the attention maps are multiplied to the input feature
map for adaptive feature refinement. MCF3D [21] introduces
a self-attention mechanism for 3D object detection. Different
from the above methods, the proposed work employs two
attention mechanisms from the global to the local to boost
3D object detection. In the second step, the proposed method
utilizes the GFA to enhance the global feature representations.
In the final step, the RA is used to enhance the local feature
representations.

III. THE PROPOSED ARCHITECTURE

The main innovation of the proposed framework, as de-
picted in Fig. 1, employs three-attention mechanisms to make
extracted features discriminative. The proposed 3D detection
framework mainly includes two parts: the first one is the multi-
sensor inputs, and the other one is the 3D object detection
networks.
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A. Multi-sensor Inputs

This paper directly takes the raw LiDAR point clouds and
RGB images as inputs. In the preprocessing, the BEV images
and RGBD images are generated simultaneously by fixed
means. Note that LiDAR and camera use two different coor-
dinate systems. In the coordinate system of LiDAR, the x-axis
points forward, the y-axis points to the left of the vehicle, and
the z-axis points upward. However, in the camera’s coordinate
system, the x-axis points to the right of the car, the y-axis
points downward, and the z-axis points forward. That is why
after the height information in LiDAR is projected onto the
RGB image plane, it is referred to as depth.

1) Bird’s-Eye-View Representation: Point clouds are gener-
ated by LiDAR, which encodes the 3D (x, y, z) coordinates and
intensity information (I) of surrounding objects. Like AVOD
[14], a six-channel BEV image encodes the density and height
information in each voxel of a LiDAR frame. Different from
MV3D [4], the BEV map does not encode the intensity of
point clouds. Specifically, the area to encode BEV image
is {x, y, z | x ∈ [0, 70] , y ∈ [−40, 40] , z ∈ [−2.3, 0.2]}. The
voxel grid size is 0.1 meter on both of the x-axis and the
y-axis. To keep as much height information as possible, the
point clouds are equally sliced into five slices along the z-
axis, and the height value is the absolute height relative to the
ground. The density map is encoded as min

(
1.0, log(N+1)

log(64))

)
in each pillar, where N is the number of points in one pillar.
Note that the density features are computed for the whole point
clouds while the height feature is computed for five slices.

2) RGBD Representation: MCF3D [21] encoded the inten-
sity of point clouds as an additional channel of the original
RGB image and named it RGB-I. Different from MCF3D,
this paper embeds the projected height information of point
clouds into the original RGB image, and calls it RGBD with 3
channels. The whole process is divided into three steps. First,
point clouds (X,Y, Z) are mapped onto the original image
(W ×H) plane as follows:(

u v 1
)T

= M ·
(
X Y Z 1

)T
, (1)

M = Prect ·
(
Rcam
velo tcamvelo
0 1

)
, (2)

where (u, v) is the image coordinate, Prect is a project matrix,
Rcam
velo is the rotation matrix from LiDAR to the camera,

tcamvelo is a translation vector, and M is the homogeneous
transformation matrix from LiDAR to the camera.

Second, the points {(x, y, z) | x ∈ X, y ∈ Y, z ∈ Z} located
into the image size W ×H are kept. Meanwhile, the LiDAR
points are projected to the camera coordinates and denoted as
(xc, yc, zc):(

xc yc zc
)T

= M ·
(
x y z 1

)T
. (3)

Finally, zc is mapped between 0 and 255 and then assigned
to the corresponding image coordinate (u, v). Fig. 2 shows the
difference between the original RGB image and the RGBD

image.

Figure 2: The top image is the original RGB image and the
bottom one is the RGBD image. Red color means the depth is
shallow, and blue color means the depth is deep. Best viewed
with color.

3) Proposals Generation: Based on the area of LiDAR
point cloud {x, y | x ∈ [0, 70] , y ∈ [−40, 40]}, a set of 3D
prior anchor boxes are placed onto it. Each 3D prior anchor
box is parameterized by the center (cx, cy, cz) and the size
(w, h, l) in meters. To generate the 3D prior anchor box grid,
(cx, cy) pairs are sampled at an interval of 0.5 meters in the
above area, and cz is computed based on the LiDAR’s height
above the ground plane [14]. In this way, 89,600 anchors
are generated in total. The size (w, h, l) is clustered from
the ground truth of KITTI’s training dataset [17]. For the
car class, (w, l, h) takes the values of (1.58, 3.51, 1.51) and
(1.65, 4.23, 1.55). For the pedestrian and cyclist class, (w, l, h)
takes the values of (0.63, 0.82, 1.77) and (0.57, 1.77, 1.72),
respectively. Specifically, each location has four anchors with
two sizes and two orientations {0◦, 90◦} for the car class.

Since the LiDAR point cloud is sparse, this causes a large
number of empty anchors. After our statistics, there are about
5K to 25K anchors that contain LiDAR points. To speed up
computation, the empty anchors are removed by computing
an integral image over the point occupancy map [14] in both
the training and testing stages. Based on the non-empty 3D
anchors, the sampling method, as introduced in section III-B5,
is employed to generate the 3D proposals. The 3D proposals
are projected onto the BEV and RGB image plane to get
the paired view-specific ROI crops, and the ROI crops are
resized to a fixed size N ×N ×Cr. Note that the 3D proposal
generation is completed in the preprocessing.

B. 3D Object Detection Networks

This section will introduce the 3D detection network in the
order of use, as shown in Fig. 1.

1) Feature Encoder and Decoder: The feature detector
comprises two sibling branches, one is for RGB image feature
extraction, and the other one is for BEV feature extraction.
Each branch consists of a feature encoder and feature decoder.
VGG-16 [22] is chosen as the feature encoder. Our encoder, as
shown in Fig. 3, differs from the VGG-16 encoder as follows:
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• The first four convolution blocks are kept, and the fifth
convolution block and the fully connected layers are
removed.

• All convolution channel numbers are reduced to half of
the original VGG-16.

For the decoder, three deconvolutional layers are used to
obtain a high-resolution feature map. The high-resolution map
offers more information for small objects. Same as FPN [23],
lateral connections link the encoder and the decoder to build
high-level semantic feature maps at all scales. Fig. 3 shows
the details.
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Figure 3: The feature extraction network, which includes three
parts: encoder, GFA, and decoder. ’C-#’ means the number
of feature map channels. Best viewed with color.

2) Global Feature Attention: Inspired by DANet [18], the
global feature attention (GFA) mechanism is proposed to inte-
grate local features with their global dependencies adaptively.
The GFA mechanism is much more efficient and also requires
less computation as compared to DANet. The GFA mechanism
includes two attention networks, as shown in Fig. 4. One is
the position attention network (PAN), and the other one is the
channel attention network (CAN).
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Figure 4: The global feature attention mechanism includes the
position attention network, the channel attention network, and
an auxiliary convolution block. Best viewed with color.

The PAN, as shown in Fig. 4a, focuses on modeling rich
contextual relationships over local features. Given the local

feature A ∈ RH×W×C , first A is reshaped to D ∈ RN×C ,
where N = W ×H is the number of pixels. Meanwhile, A is
reshaped and transposed to ART ∈ RC×N . After that, matrix
multiplication is employed between D and ART and also the
softmax function is utilized to compute the spatial attention
map S ∈ RN×N :

sji =
exp(Di ·ART

j )∑N
i=1 exp(Di ·ART

j )
, (4)

where sji measures the i-th position’s influence on the j-th
position, and i, j ∈ [1,W ×H]. The more similar the feature
representations of the two locations, the higher the correlation
between them.

Second, matrix multiplication is utilized between D and S,
and the product is reshaped to RH×W×C . Finally, an element-
wise sum operation is performed as follows:

Epj = α

N∑
i=1

(sjiDi) + Aj , (5)

where α is a learnable parameter to re-weight the new gener-
ative feature map. From Equation 5, it can be concluded that
the resulting feature Epj at each location j is a weighted sum
of the feature at all locations and the original feature.

The CAN, as shown in Fig. 4b, is designed to exploit the
interdependencies between channel maps, since each high-
level channel map possesses different semantic responses. The
CAN emphasizes the interdependence of the feature maps and
boosts the feature representation of specific semantics. The
whole reasoning process is the same as that of the PAN, and
the difference is that A is reshaped to Y ∈ RN×C firstly. The
details are as follows:

xji =
exp(ART

j ·Yi)∑C
i=1 exp(A

RT
j ·Yi)

, (6)

where xji measures the i-th channel’s influence on the j-th
channel, and i, j ∈ [1, C].

Ecj = β

C∑
i=1

(Yixji) + Aj , (7)

where β is a learnable parameter to re-weight the new gen-
erative feature map. The feature Ecj at each channel j is a
weighted sum of the feature at all channels and the original
feature. This adds the benefit of enhancing the distinguishing
ability of each channel.

Also, an auxiliary convolutional block is appended to each
PAN and CAN, which includes a 2D convolutional layer, a
ReLU activation function, a dropout layer (rate=0.5), and a 2D
convolutional layer. The filter size of the two convolutional
layers is 3 × 3. Note that the two outputs’ shapes of 2D
convolutions are the same as those of the PAN and the CAN.
The auxiliary convolution block achieves 1.42% gains in 3D
object detection.

Finally, an element-wise sum operation is performed for the
outputs of the PAN and the CAN. Then the result is fed into
the next stage.
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Figure 5: The region of interest attention (RA). It introduces
a soft self-attention mechanism to weight each channel of the
BEV and RGB image as pair and is a new fusion method
besides the element-wise addition and concatenation operation.

3) Region of Interest Attention (RA): MV3D [4] and AVOD
[14] only simply combine the ROI crops from both the
RGB image proposals and the BEV proposals by an addition
operation or a concatenate operation. This paper introduces
the RA, as shown in Fig. 5, to weight RGB image ROIs
and BEV ROIs by channel. Specifically, for any given BEV
ROI Fb ∈ RN×N×Cr and an image ROI Fi ∈ RN×N×Cr ,
first Fb and Fi are fused as Fa ∈ RN×N×2Cr by a channel
concatenation operation. Second, the Fa is fed into a global
mean-pooling to output Fgp ∈ R2Cr . Third, the Fgp is fed into
a two-layer fully connected layers (FC). The first layer of the
FC outputs F1 ∈ Rd×1, where d {d | d = max(2Cr/r, 32)}
is a parameter based on a reduction ratio r to optimize the
efficiency of this model. The second layer of the FC outputs
Ffc ∈ R2Cr×1. The Ffc is reshaped as F2 ∈ R2×Cr . Then a
softmax function is used for the F2 by channel.

ac =
eAc

eAc + eBc
,

bc =
eBc

eAc + eBc
,

(8)

where A, B are the first-row vector and the second-row vector
of F2, a and b are the attention vector for Fb and Fi,
respectively, and c ∈ [1, Cr] is the channel number of each
ROI.

Finally, the fusion of the paired ROIs with the RA mecha-
nism is as follows:

Fcw = ac · Fcb + bc · Fci ,
w.r.t ac + bc = 1,

(9)

where Fw is the weighted sum between Fb and Fi. Compared
with the previous fusion methods, the RA is an attention
mechanism for the fusion of view-specific ROIs.

4) Loss Function: The equal-length feature Fw is fed into a
three-layer FCs (2048, 2048, 2048) to deeply merge and then
the fused tensor is fed into a 3D detection head with three
parallel branches: classification (class no.), box regression
(10), and angle regression (1). Note that each branch only
has one FC layer and the number in each bracket means
the dimension of FC. MV3D [4] encodes a 3D box as eight
corners and regresses them. However, it does not consider the
physical constraints of a 3D box. To reduce the redundancy

and keep the physical constraints, AVOD [14] encodes a 3D
box with four corners and two heights. Different from AVOD,
our method proposes a plane-based 3D bounding box with
an 11-dimensional vector (x1 · · ·x4, y1 · · · y4, h1, h2, θ). The
corresponding regression residuals between the 3D anchors
and ground truth are defined as follows:

∆x =
xgc − xac
da

, ∆y =
ygc − yac
da

,

∆h = log(
hg

ha
), ∆θ = sin(θg − θa),

(10)

where da =

√
(x2 − x1)

2
+ (y4 − y1)

2 is the diagonal of the
base of the anchor box. The localization loss function and the
angle loss function are as follows:

Lbox =
∑
b

SmoothL1(∆b), (11)

Langle =
∑
θ

SmoothL1(∆θ), (12)

where the b ∈ (x1 · · ·x4, y1 · · · y4, h1, h2) and SmoothL1 is
the smooth L1 loss function in the Fast R-CNN [24].

For the object classification loss, the focal loss [25] is used:

Lcls = −αa(1− pa)γ log(pa), (13)

where pa is the class probability of an anchor, α = 0.25, and
γ = 2. The total loss can be formulated as follows:

Loss =
1

Npos
(β1Lbox + β2Lcls + β3Langle), (14)

where Npos is the number of positive anchors and β1 = 7.0,
β2 = 5.0, and β3 = 1.0. For the car class, an anchor is
defined as positive if it has a 2D IoU greater than 0.60
(pedestrian/cyclist is 0.3) with its paired ground truth. If it
has a 2D IoU less than 0.55 (pedestrian/cyclist is 0.3), the
anchor is labeled as negative. The other anchors are ignored
when computing the loss.

5) Training and Inferring: In training, the proposed model
is trained using mini-batches containing 16,384 proposals
(positive and negative ratio 1:1) for one frame.

In inferring (validation and testing), the non-empty anchors
will be directly used as the proposals to crop and resize
the view-specific ROIs. 2D non-maximum suppression (NMS)
at an IoU threshold of 0.01 on the BEV boxes is utilized
to remove the redundant 3D proposals, and the top 15 3D
predictions are kept.

IV. EXPERIMENTS

A. Dataset and Metric

The proposed model is trained and evaluated on the KITTI
dataset [17]. The KITTI object dataset possesses 7,481 training
frames and 7,518 testing frames. Each frame is comprised of
a point cloud, stereo RGB images, and calibration data. In
this research, only a point cloud and the left image with their
calibration data are used. The KITTI includes seven classes:
car, van, truck, pedestrian, person (sitting), cyclist, and tram.
Because the number of other categories is small, the car, pedes-
trian, cyclist classes are used for comparison. MV3D [4] is the
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Table I: Comparison with state-of-the-art methods. All methods are compared using the 3 difficulties: easy (E), moderate (M),
and hard (H). For easy understanding, the top two numbers are highlighted in bold and italic for each column and the second
best is shown in blue. All methods accept RGB images and point clouds as input. ”-” means that the data can not be found.

Method Pub.Year Stage (s) Number of
Parameters Runtime (ms) 3D (%) BEV (%)

E M H mAP E M H mAP
MV3D [4] 2017

Two

- 360 71.29 62.68 56.56 63.51 86.55 78.10 76.67 80.44
F-PointNet [26] 2017 - 170 83.76 70.92 63.65 72.78 88.16 84.02 76.44 82.87

PC-CNN [27] 2018 - 500 57.63 51.74 51.39 53.59 83.61 77.36 69.61 76.86
AVOD [14] 2018 38,073,528 80 83.11 74.02 67.84 74.99 - - - -

AVOD-FPN [14] 2018 - 100 84.41 74.44 68.65 75.83 89.37 86.09 79.13 84.86
MVX-Net [28] 2019 - 150 85.50 73.30 67.40 75.40 89.50 84.90 79.00 84.47

MCF3D [21] 2019 Three - 160 84.11 75.19 74.23 77.84 88.82 86.11 79.31 84.75
AVOD-SSD [15] 2018

One

13,399,918 90 82.36 72.92 67.07 74.12 89.00 85.08 78.91 84.33
Cont-Fuse [29] 2019 - 60 86.32 73.25 67.81 75.79 95.44 87.34 82.43 88.40

Complex-Retina [16] 2019 - 90 78.62 72.77 67.21 72.87 89.01 84.69 78.71 84.14
Proposed - 20,575,616 110 85.12 76.23 74.46 78.60 89.64 86.23 85.60 87.16
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Figure 6: Visualization of the Precision-Recall curve for the car class. From left to right are the curves of 2D, 3D, and BEV.
In each curve, each color line denotes one difficulty of the car class. The curves are drawn according to the best-proposed
model.

pioneer in the multi-modal 3D object detection and divides
the training dataset into two subsets (ratio=3,712:3,769): the
training subset and the validation subset. To compare fairly
with its results, among the subsequent articles employ the same
criteria as MV3D. Two models are trained for the car class
and pedestrian/cyclist classes, respectively, since the training
dataset has an unbalanced amount of training data for the car
class and the pedestrian/cyclist classes.

KITTI’s object detection metric is defined as 11-point
Average Precision (AP). Intersection-over-Union (IoU) is the
generic evaluation criterion for object detection. In the evalua-
tion of 2D, 3D, and BEV detection, IoU is at the threshold of
0.7 for the car class and 0.5 for the pedestrian/cyclist classes.
According to the bounding box height, truncation levels, and
occlusion classes of objects, KITTI groups all objects into
three difficulty classes: easy (E), moderate (M), and hard
(H). In the evaluation, prediction results are evaluated by the
program that comes with the KITTI dataset, and the program
outputs the three results for the easy, moderate, and hard class,
respectively.

B. Implementation Details

Since the 2D RGB camera images are of different sizes, the
images are center-cropped into a uniform size of 1200×360.
Each point cloud is voxelized as a 700×800×6 BEV pseudo
image. The proposed model is implemented using TensorFlow

on one NVIDIA 1080 Ti GPU with a batch size of 1. Adam
is the optimizer. Our model is trained for a total of 120K
iterations with the initial learning rate of 0.0001, and decayed
by 0.1 at 60K iterations and 90K iterations. The whole training
process takes only 12 hours, and the proposed model is
evaluated from 100K iterations to 120K iterations every 5K
iterations.

C. Comparison with State-of-the-Art Methods

All experiments are evaluated on the KITTI validation
subset. It should be noted that no currently published one-
stage method publicly provides results on the pedestrian/cyclist
classes for 3D object detection based on LiDAR and RGB
images. Hence, the comparison is only for the car class in
Table I. All methods are grouped into three sets: one-stage
methods, two-stage methods, and three-stage methods based
on LiDAR and image. For a fair comparison, this article
only compares with the state-of-the-art methods in the past
five years that use LiDAR and images as input. Most of the
methods only disclose 3D and BEV performance. Thus, 2D
detection performance is not listed in Table I.

In the 3D object detection, our proposed method outper-
forms all state-of-the-art methods with noticeable margins
except for a slightly lower score than Cont-Fuse [29] in
the ’E’ column. Specifically, our proposed method achieves
1.04% gains on the most important ’M’ column compared
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with the second-best performing method, and also outperforms
the second-ranked MCF3D [21] by 0.76% on the mean av-
erage precision (mAP). In BEV object detection, the overall
performance of Cont-Fuse [29] is better than ours, but our
method outperforms Cont-Fuse [29] in the ’H’ column with
a big margin of 3.17%. For the inference time, the proposed
method still achieves a comparable speed by taking the high
precision into account. The precision-recall curves of the best-
proposed model are shown in Fig. 6.

To further understand the proposed model, Table II shows
the number of parameters for each component in the proposed
framework.

Table II: The number of parameters for each component.

Component Total Base Network GFA RA
Number of
Parameters 20,575,616 15,852,928 4,718,592 4,096

Since the state-of-the-art methods, shown in Table I, do
not provide the pedestrian/cyclist class results, the pedes-
trian/bicycle results cannot be compared with other methods.
This paper provides the results of pedestrian/bicycle for refer-
ence in Table III.

Table III: The 3D and BEV object detection accuracy for the
pedestrian and cyclist. To ensure the best visual effect, the
table does not show the ’Easy (E)’ results.

Class 2D (%) 3D (%) BEV (%)
M H M H M H

Pedestrian 58.44 52.11 65.39 59.29 65.47 59.38
Cyclist 43.58 38.97 43.23 38.31 43.27 38.37

D. Ablation Study
In this section, massive experiments are utilized for analysis

and ablation of the proposed model on the KITTI validation
subset. To ensure the best visual effect, all tables do not show
the ’Easy (E)’ results.

Fig. 7 shows the qualitative results of 3D object detection.
To more directly compare the prediction results with the
ground truth values, the green and red color represent the
ground truth and prediction, respectively. It can be seen that
our method can detect and localize 3D objects well. Compared
with the pedestrian/bicycle results, the performance of the car
detection is much better due to the larger size of the cars.

Table IV: The effect of global feature attention. ’Where use
it?’ means which feature encoder uses the GFA. The third and
the fourth rows show the effect of the auxiliary convolutional
block. The best performance is highlighted in bold for the 3D
column.

Where use it? 2D (%) 3D (%) BEV (%)
M H M H M H

RGB Image 87.85 86.82 74.71 68.46 85.61 79.41
BEV 87.87 86.75 73.65 67.94 85.56 79.31

RGB Image+BEV 88.18 86.53 75.87 73.98 85.35 85.44
w/o Conv. 87.61 86.27 74.45 68.42 85.08 85.25

1) Effect of Global Feature Attention: Table IV shows how
does the GFA affects 3D performance. Two feature encoders

are used to extract the BEV features and the RGB image
features, respectively. This paper explores the impact of the
GFA on RGB image features and BEV features, respectively.
Relative to the BEV features (the second row), the GFA
is more helpful for RGB image feature extraction (the first
row) with 1.06% gains in the moderate class. In addition,
one more experiment is employed to analyze the effect of
the auxiliary convolutional block in section III-B2. Compared
with the results in the last row, the auxiliary convolutional
block (the third row) achieves a 1.42% and 5.56% gains in
the moderate and hard classes of 3D performance, respectively.
The reason is that the convolutional layer further merges the
fused features.

2) Effect of Diversity Combination: Table V shows the
combinations of different proposed methods and their corre-
sponding performances. Among the four approaches, in terms
of a single method, FPN contributes a maximum of 0.95%
in 3D performance, because the FPN integrates the high-level
semantic feature maps at all scales. Besides, RGBD images
contribute to BEV detection with a 0.89% increase. Compared
with the RA (the third row), the GFA (the fourth row) is more
helpful to boost 3D performance due to it enhances the global
feature representations. Each proposed method only slightly
improves the detection performance, however, the proposed
framework greatly boosts the detection accuracy based on all
proposed methods. Compared with the baseline (the first row),
the best-proposed combination (the last row) achieves 1.48%,
3.31%, and 1.15% gains in 2D, 3D, and BEV, respectively.
As can be seen, the proposed methods are quite useful for
boosting 3D performance.

Table V: The effect of different proposed methods. 2D, 3D,
and BEV performance are compared on the ’Moderate’ dif-
ficulty for the car class. FPN denotes the feature pyramid
network. The best performance is highlighted in bold for each
column.

Method Combinations 2D (%) 3D (%) BEV (%)
FPN RA GFA RGBD

86.99 72.92 85.08√
87.42 73.87 85.36√
87.67 73.22 85.30√
87.20 73.34 85.89√ √
87.43 74.55 85.52√ √
87.78 73.11 85.20√ √
87.55 74.07 85.17√ √ √
88.18 75.87 85.35√ √ √ √
88.47 76.23 86.23

3) Effect of RGBD image: Based on the best combination in
Table V, three sets of experiments are used to study the effect
of RGB, RGB-I, and RGBD for the car class, respectively.
Table VI shows that RGBD surpasses the other two images
in all aspects. Compared with the RGB image, the RGB-I
has very limited performance improvement for the model, and
even worse than the RGB image in most performances. In
terms of 3D performance, the RGBD achieves 0.36%, 0.48%
gains in the moderate, and hard difficulty, respectively. The
experimental results verify that the RGBD indeed preserves
more 3D information of a point cloud.
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Figure 7: Visualizations of 3D detection results on point clouds. The green color denotes the ground truth and the red color
represents the prediction. The first two rows are the results of the car class. The last row is the results of cyclist and pedestrian
classes.

Table VI: The comparison of RGB, RGB-I, and RGBD. The
best performance is highlighted in bold for the 3D column.

Class 2D (%) 3D (%) BEV (%)
M H M H M H

RGB 88.18 86.53 75.87 73.98 85.35 85.44
RGB-I [22] 88.24 86.94 75.46 68.94 85.48 79.38

RGBD 88.47 86.98 76.23 74.46 86.23 85.60

4) Effect of Region-of-Interest Attention: The RA is a
soft attention network for the fusion of paired view-specific
ROIs. First, the input size of the RA is analyzed. Taking the
efficiency factor into account, three kinds of input sizes are
utilized for analysis. The experimental results are shown in
Table VII. As can be seen, the input size 7 × 7 is the best
candidate for efficiency and 3D detection accuracy. This may
be due to the three reasons: (1) most of the proposals with an
approached size, 7× 7; (2) if the cropped feature map based
on the proposal is resized to a small size, such as 5× 5, and
the important features may be lost; (3) if the cropped feature
map is resized to a large size, the important feature may be
diluted.

Table VII: The effect of input size for the RA. The best
performance is highlighted in bold for the 3D column.

RA size 2D (%) 3D (%) BEV (%)
M H M H M H

5× 5 87.68 86.40 73.10 67.57 85.37 79.30
7× 7 87.43 86.84 74.55 68.44 85.52 79.37
9× 9 87.49 86.31 74.28 68.05 85.47 79.44

MV3D [4] employs the concatenation operation to fuse
view-specific ROIs. AVOD [14] exploits the addition operation
for fusion. The concatenation as comparison to the addition
operation benefits to boost performance, but the performance
improvement is a little. Differ from these two operations, the
proposed RA pays more attention to the important features
through learning. In 3D performance of moderate difficulty
class, RA achieves 0.68%, 0.42% gains as compared to the
Addition and Concatenation operation, respectively, as shown
in Table VIII.
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Table VIII: The effect of the different fusion methods. The
best performance is highlighted in bold for the 3D column.

Fusion Method 2D (%) 3D (%) BEV (%)
M H M H M H

Addition [14] 87.42 86.63 73.87 68.25 85.36 79.20
Concatenation [4] 87.85 86.90 74.13 67.98 85.79 79.22

RA 87.43 86.84 74.55 68.44 85.52 79.37

Tables III-VIII show that the 2D IoU metric is more
helpful for 2D and BEV performance. It ignores the impact of
proposals’ height during the stage of proposal generation, and
it is a drawback for 3D object detection accuracy. Note that
the proposed method achieves the best performance in 2D and
BEV, hence, the 3D performance is only compared in Tables
III-VIII.

V. CONCLUSION

This paper proposes a one-stage 3D object detection frame-
work based on LiDAR and Camera, which benefits from the
three attention mechanisms to boost 3D detection accuracy.
First, the height attention mechanism is introduced into the
input RGB images to generate the RGBD images. Second,
the global feature attention mechanism is utilized for both the
RGB image and the BEV branches at the feature extraction
stage. It benefits by capturing the discriminative features from
both the channels and spatial dimensions. Finally, the region-
of-interest attention mechanism is employed to fuse the paired
view-specific ROIs. Our proposed method greatly improves the
3D object detection performance, and it outperforms all state-
of-the-art methods based on LiDAR and Camera in 3D object
detection.

In the future, the way to generate BEV images can be
replaced with a learnable feature generator like SECOND
[30]. Additionally, the method of anchor generation can be
changed from anchor-based to anchor-free. In this way, with
the advantages of RGB images and LiDAR point clouds, 3D
object detection based on LiDAR and camera can achieve
better performance than LiDAR-based methods.
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