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Abstract—Camera-based surveillance systems largely perform
an intrusion detection task for sensitive areas. The task may
seem trivial but is quite challenging due to environmental
changes and object behaviors such as those due to night-
time, sunlight, IR camera, camouflage, and static foreground
objects, etc. Convolutional Neural Network (CNN)-based algo-
rithms have shown promise in dealing with these challenges.
However, they are exclusively focused on accuracy. This paper
proposes an efficient supervised foreground detection (SFDNet)
algorithm based on atrous deep spatial features. The features
are extracted using atrous convolution kernels to enlarge the
field-of-view (FOV) of a kernel mask, thereby encoding rich
context features without increasing the number of parameters.
The network further benefits from a residual dense block
strategy that mixes the mid and high-level features to retain the
foreground information lost in low-resolution high-level features.
The extracted features are expanded using a novel pyramid
upsampling network. The feature maps are upsampled using
bilinear interpolation and pass through a 3x3 convolutional
kernel. The expanded feature maps are concatenated with the
corresponding mid and low-level feature maps from an atrous
feature extractor to further refine the expanded feature maps.
The SFDNet showed better performance than high-ranked fore-
ground detection algorithms on the three standard databases.
The testing demo can be found at https://drive.google.com/file/d/
1z_zEj9Yp7GZeM2gSIwYKvSzQIxMAiarw/view?usp=sharing.

Index Terms—Intelligent surveillance systems, dual-camera
sensors, IR camera, Convolutional Neural Networks.

I. INTRODUCTION

MART cities are employing camera-based surveillance
systems for public safety. According to statistics, some
smart cities have 20-100 cameras per 1000 people. Earlier
surveillance systems require authorized personnel to closely
monitor the footage for a possible security breach. Thus, such
systems require a high level of focus from security personnel.
Thus, it is important to automate said surveillance systems.
Intelligent surveillance systems are taking over their con-
ventional counterparts. They are autonomous due to the
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implementation of computer vision algorithms. They detect
anomalies and alert security personnel. Such systems are
widely implemented at borders and in industrial complexes
to monitor restricted areas. These camera-based surveillance
systems implement a foreground detection algorithm as a
building block of high-level tasks, like intrusion detection.
Thus, foreground detection directly affects the overall perfor-
mance of the system.

Foreground detection algorithms aim to segment desired
information (termed as foreground) from the background in
a scene. Background subtraction and foreground segmentation
are used interchangeably. The latter usually refers to CNN
based supervised algorithms. The foreground is defined ac-
cording to the application. It could be a human entering a
prohibited area [1], an unattended bag left in an airport [2], or
a car parked on a street [3], [4], etc. In other words, it could
be any object of interest that requires segmentation from the
background.

Foreground detection algorithms are broadly classified as
unsupervised and supervised [5]-[7]. The unsupervised algo-
rithms build a concrete background model from the initial
frames of a video sequence using low-level features such as
intensity, color, or texture. Gaussian Mixture Models (GMM)
is a popular choice among unsupervised algorithms. They
use a Gaussian to model the background based on mean and
covariance [8].

Self-Balanced SENGsitivity (SuBSENSE) [9] relies on the
observation of pixel values for modeling the background. It
exploits the spatial region of the pixel to model the background
using a local binary pattern. Pixel-based Adaptive Word Con-
sensus Segmenter (PAWCS) [10], an improved version of
SuBSENSE, incorporates an adaptive threshold scheme. SuB-
SENSE was further improved by introducing a reward/penalty
weighing strategy in Weight Sample Background Extractor
(WeSamBE) [11].

In Unity There Is Strength (IUTIS) [12] proposes a genetic
algorithm that handpicks the best algorithm for the particular
video sequence at hand. Multi-Layer Robust Principal Compo-
nent Analysis (ML-RPCA) [13] exploits low-rank recovery by
extracting information using multi-dimensional arrays. These
unsupervised algorithms perform well on benchmark datasets,
e.g., Change Detection dataset (CDNet) [22]. However, they
suffer in practical challenges posed by camera-based surveil-
lance systems [5] such as night time, use of IR camera, and
camouflage effect.

Supervised algorithms are trained offline with ground-truth
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using Convolutional Neural Networks (CNNs) as the feature
extractor [14]-[30]. DBS [14] labels a patch of an image as
a foreground or background. The network is trained with a
background image as a ground-truth. It uses 50% of a video
sequence as training and the remainder to test. The algorithm
provides promising prospects and a possible solution to the
drawbacks inherent to unsupervised algorithms.

DeepBS [16] trains multiple CNNs with multiscale input
images. It trains only one model with 5% of all the frames of
the video sequence from the change detection dataset (CDNet).
DBS and DeepBS train a CNN with a background model as
ground-truth. Thus, such algorithms fail to deal with cluttered
scenes. Additionally, CNN weights are learned from scratch,
which is time inefficient.

CascadeCNN [16] takes input images in three differ-
ent scales and feeds them into three CNNs using fore-
ground/background labels as ground-truth. The feature maps
are upsampled using bilinear interpolation. It also trains CNN
weights from scratch. RT-BGS [18] builds probability-based
background and foreground models using a pretrained CNN
model.

Several algorithms tried to learn long-term foreground
dependencies using spatio-temporal features. M2DC4 [19]
proposes a dilated CNN with convolutional long-term short-
term memory networks (ConvLSTM). MS-ST [20] employed
multi-scale spatio-temporal features using a pretrained CNN
and ConvLSTM. MvRF-CNN [28], similar to M2DC4, em-
ployed dilated CNN with ConvLSTM for traffic surveillance
applications.

These ConvLSTM based algorithms require sequential input
with labeled ground-truths for training (70%). For instance,
MS-ST used 14 sequences of images, the most that could
fit into NVIDIA 1080Ti GPU memory [20]. 3D CNN-LSTM
[29] tried to decrease the number of sequential frames to 4
with grayscale input. Pretrained model and 3D convolutional
filters were used. Still, it takes 80-120 minutes to train a single
model. While pretrained models might be fast to train, the
network might not properly learn the foreground object in a
particular video. Their deployment into real-time systems is
challenging due to the high computational complexity, a large
amount of data needed for training, and a high-end hardware
requirement.

This paper proposes an efficient supervised foreground
detection algorithm based on CNN (SFDNet) and contributes
in four folds:

o Network Design: SFDNet proposes a new atrous spa-
tial feature extractor (ASFE) and pyramid upsampling
network (PUPN). ASFE is designed using standard
and atrous convolutional layers to enlarge field-of-view
(FOV) without increasing number of parameters. The
mid and high-level features are intermixed via residual-
dense blocks strategy (RD) to build a global context and
retain the foreground information. PUPN is designed as a
sandwich of 3x3 convolutions and bilinear interpolation,
which ease the gradient flow during training. The mid and
low-level features of ASFE are also propagated to PUPN
to improve foreground extraction. SFDNet is trained via
a hybrid training strategy.

2

+ Extensive Experiments: SFDNet is tested on three
datasets with more than 180,000 image sequences. The
choice of network design is further supported by ablation
studies to validate the effectiveness of network design.

o New Dataset: A dataset of HD videos in an industrial
setting is developed. It is unique as it also provides videos
shot with an IR camera at night. The dataset is supported
by manually labeled ground-truth images for training the
supervised algorithms. The dataset would be made public
for the research community.

o Application Side: Industrial surveillance systems are
crucial for securing sensitive areas. The proposed algo-
rithm adds-on with efficiency and efficacy and can be
implemented on low-end hardware. However, the scope
of the SFDNet is not limited to the industrial domain.
It can be extended to other applications such as airport
ground surveillance, etc.

The remainder of the paper is organized as follows: Section

IT describes the proposed algorithm. Section III proves the ef-
fectiveness of the proposed algorithm. The paper is concluded
with prospects.

II. PROPOSED ALGORITHM

The SFDNet takes an input image of size WxHx3, where
W, H, 3 are respectively width, height, and depth/channels
of an image as shown in Figure 1. SFDNet modifies the
Visual Geometry Group (VGG-16) CNN [23]. There are 13
standard convolutional layers (five blocks) and three fully-
connected layers in VGG-16. The number of convolution
kernels employed is 64, 128, 256, and 512 in each block. The
input is zero padded to maintain spatial dimensions. Rectified
Linear Unit (ReLU) is applied after each convolution layer to
remove negative values in a feature map.

A. Atrous Spatial Feature Extractor (ASFE)

The mainstream feature extractors for foreground detection
can be summarized into three different groups as shown in
Figure 2. Each block represents stacked convolutional layers.
Figure 2a shows a feature extractor composed of stacked
standard convolutional layers. Figures 2b and 2c¢ show the
spatio-temporal feature extractors with convLSTM blocks.
These extractors employ either a standard or atrous convo-
lutional layers. The difference between mainstream feature
extractors and proposed ASFE is evident from Figure 2d. The
proposed ASFE employs a combination of stacked standard
convolutional layers (SSCL) and stacked atrous convolutional
layers (SACL) to increase the FOV. Residual-dense (RD)
blocks strategy is applied to intermix the mid and high-level
features.

1) Stacked Standard Convolution Layers (SSCL): Like
VGG-16, the first two blocks of SFDNet are SSCL with
two convolutional layers and max-pooling layers each (Fig.
1). The convolutional layers are stacked to define a block
to increase field-of-view (FOV) without increasing trainable
parameters. The FOV of a 3x3 convolution kernel is the same
as its size. However, the FOV of two stacked 3x3 convolution
kernels would be effectively equal to that of a 5x5 convolution
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Figure 1. SFDNet with an atrous spatial feature extractor (ASFE) and pyramid upsampling network (PUPN).

2) Stacked Atrous Convolution Layers (SACL): The func-
tion of the 3rd-5th blocks is the same as before, i.e., increasing
FOV without increasing trainable parameters. The FOV of
three 3x3 convolution kernels is effectively equal to that of
a 7x7 convolution kernel [23]. A 7x7 convolution filter has 49
trainable parameters, while, a stack of three 3x3 convolution
filters have 27 parameters (45% fewer parameters).

Unlike VGG-16, the 3rd-5th blocks of proposed ASFE
are three SACL with varied atrous rates a. The number of
convolution kernels is 256, 512, and 64. Motivated from
[24, 25], an atrous convolution kernel (ACK) is employed to
extract the features. ACK is expanded by inserting zeros in the
appropriate positions of the kernel mask. The ACK increases
the FOV of a kernel mask without increasing the number of
parameters.
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The feature maps produced by the ACK are the same size as
the input. But, each neuron in the feature map has rich global
context information due to a larger FOV [24]. An increase in
the FOV of an ACK can be formulated as [(a-1)x(K-1) + K],
where K is kernel size and a is atrous rate [25]. Thus, the FOV
of a 3x3 ACK with a= 3 is 7x7. Varied atrous rates (a= 3, 4,
and 5) are applied on each ACK to increase the FOV to 7x7,
9x9, and 11x11. Atrous rates a were chosen after extensive
experimentation. As objects often have various scales in an
image, the varied atrous rates help to obtain feature maps with
multi-scales forming a feature pyramid [23].

Standard Convolution

layers/blocks layers/blocks

Figure 2. The difference between mainstream feature extractors and the
proposed ASFE.

Similarly, the FOV of three stacked convolution kernels

kernel [23]. This decreases the number of trainable parameters
appreciably. For example, a 5x5 convolution filter has 25
trainable parameters. But, a stack of two 3x3 convolution
filters has 18 parameters [23]. Hence, a feature from the same
FOV can be extracted with fewer trainable parameters.

can be written as (K;+Ks+K3-2), where Ky, Ky, K3 are
respective atrous kernel sizes [25]. Thus, stacking three atrous
convolution layers with FOV 7x7, 9x9, and 11x11 will result
in the FOV of 25x25 as compared to the FOV of 7x7 in VGG-
16, without an increase in the trainable parameters.
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3) Residual-Dense Blocks (RD): Inspired by [26, 28], the
atrous convolutional layers in the 4th block are further con-
catenated channel-wise to form residual-dense block and fed
into the 5th block. For example, feature maps of block4convl
are 1-512. Then, feature maps of block4dconv2 would be from
513-1024, and so on. This residual-dense blocks (RD) strategy
helps to aggregate a global context and retain foreground
information lost due to several convolutional operations on
low-resolution high-level feature maps [25]. Furthermore, con-
catenating features extracted from different FOVs helps to
build a better global context via a feature pyramid. The feature
maps are squeezed back from 1536 to 64 using 1x1 pointwise
convolutions and fed in the 5th block.

Similarly, atrous convolutional layers of 5th block are
also concatenated channel-wise and fed into the pyramid
upsampling network (PUPN). The low resolution of high-
level features often results in decreased pixel-level prediction.
Unlike VGG-16, SFDNet removes the max-pooling layers in
the 4th and 5th blocks and reduces the input size by 8 times.
The spatial dropouts [27] are added after each convolution
layer of the 4th and 5th block. It helps to generalize the
network (avoid over-fitting) and further decrease trainable
parameters by zeroing out the whole feature map.

B. Pyramid Upsampling Network (PUPN)

The final feature maps from the ASFE are expanded to
the original size to get the pixel-wise prediction. The design
of an upsampling network is crucial for better foreground
object detail extraction. Bilinear interpolation (BI) has been
widely employed to expand the feature maps for pixel-wise
prediction [14]-[17]. BI can be regarded as a simple approach
and cannot guarantee the recovery of the foreground object’s
detail. Another drawback is that it utilizes fixed weights, which
cannot be learned during training. This is problematic during
back-propagation as the gradient does not flow through an
upsampling network.

Later works have utilized transposed convolution to expand
feature maps [18, 19, 20, 28, 29]. The feature maps are zero-
padded and convolved with a transposed convolution kernel.
The weights of the kernel are tuned during training, but this
approach results in a checkerboard effect on the expanded
feature maps [7].

SFDNet proposes a new pyramid upsampling network
(PUPN). The PUPN is designed as BI sandwiched between
3x3 convolutional layers (conv.—BI—conv.). There are three
such sandwiched structures in PUPN as shown in Figure
2. BI is applied by a factor of 2 to expand the feature
maps. The expanded feature maps are then refined using a
3x3 convolutional kernel. Such a strategy allows a gradient
flow during the back-propagation process and mitigates the
checkerboard effect. After the first BI, the spatial size increases

from 1 to 1 The expanded feature maps are added with the
corresponding mid-level features (block3conv3). This helps
in two folds. First, the expanded features which have more
global features representation from ASFE are mixed with
the locally extracted mid-level features. Secondly, it helps to
retain the lost foreground information after the application

4

of several convolution layers. The depth of feature maps is
again squeezed to 64 via 1x1 pointwise convolution. Then,

the spatial dimension is expanded to 1 using BIL

The expanded feature maps are again added with cor-
responding low-level feature maps (block2conv2) and pass
through BI to get the original input size of an image. The
depth of feature maps is always squeezed to 64 using a 1x1
pointwise convolution. This helps to control the model size
(number of parameters). The ablation study is performed in
Section III. C to demonstrate the effectiveness of network
design (Table II).

The final layer of the PUPN outputs the probability of a
pixel being a foreground using the sigmoid function. The
threshold (Th=0.9) is applied to the final layer to get the
foreground and background pixels. The threshold is chosen
after extensive experimentation. Binary cross entropy loss
L; is employed during training (Equation 1). It compares
probabilities of a pixel being a foreground or background with
the ground-truth defined as:

M

a7 D lwlog (p)) + (1= y))log (1 —p))l, ()
j=1

L=

where y? is the ground-truth label and p?, is the predicted value
of the pixel ¢ at location j. M is the total number of pixels in
an image.

C. Hybrid Training Strategy

The SFDNet is trained using a hybrid training strategy. The
weights of the first two blocks of the ASFE were borrowed
from the pretrained VGG model. Such a scheme reduces the
number of weights to be learned. It gives the SFDNet a head
start and the network trains faster. The intuition is that the
initial convolutional layers extract low-level features such as
edges, color, corners, etc. [24]. The weights of the 3rd-5th
blocks are calibrated via fine-tuning with the specific video or
dataset, e.g., CDNet. Such a strategy helps the network to learn
deep atrous spatial features according to the specific video or
dataset.

III. EXPERIMENTAL ANALYSIS AND RESULTS

SFDNet is compared with high-ranked foreground detection
algorithms. The unsupervised algorithms used include SuB-
SENSE [9], PAWCS [10], WeSamBE [11], IUTIS-5 [12], and
ML-RPCA [13], whereas DeepBS [16], CascadeCNN [17],
RT-BGS [18], M2DC4 [19], MS-ST [20], MVRF-CNN [28]
and 3D CNN-LSTM [29] are supervised algorithms.

A. Datasets Description

The SFDNet is tested on three different datasets: the change
detection dataset [22], the i-LIDS dataset [21], and Our
dataset. The datasets pose practical challenges an industrial
surveillance system may face such as illumination changes,
dynamic backgrounds, shadows, bad weather, thermal camera,
moving camera, camera jitter, infra-red (IR) camera, camou-
flaged foreground object, static foreground object, scale and
speed-variance of an object.
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1) Change Detection Dataset (CDNet): CDNet [22] is the
standard benchmark for foreground detection. There are 54
videos, each consisting of 900-8000 frames. The image size
varies from 320x240-720x480. All the videos accumulate to
150,000 frames with manually labeled ground-truths. There
are 11 categories and each category has 4-6 videos. Therefore,
the dataset is a good benchmark to test the endurance of the
foreground detection algorithms.

Table I
DATASETS DESCRIPTION.
Video [ 7+ Training Frames  # Testing Scenario
i-LIDS dataset
1 50 950 Day, Normal walk
2 50 950 Day, Running
3 - 1000 Day, Crawling
4 - 1000 Day, Slow walk
5 - 1000 Day, Walking fast
6 50 950 Night, Walking away
7 - 1000 Night, Walking slowly
8 - 1000 Night, Far from camera
9 - 1000 Night, Camouflage intruder
10 - 1000 Night, Camouflage intruder
ISL-ISZM dataset
11 50 2250 Day, Normal walk
12 - 2300 Day, Walking fast
13 - 2300 Day, Running
14 - 2300 Day, Slow walking
15 - 2300 Day, Multiple intruders
16 50 2250 Day, Normal walk
17 - 2300 Day, Running
18 - 2300 Day, Slow walking
19 - 2300 Day, Dynamic background
20 - 2300 Day, Dynamic background
21 50 950 Night, Walking fast
22 - 1000 Night, Camouflage intruder
23 - 1100 Night, Camouflage intruder
24 - 1100 Night, Camouflage intruder
25 50 1050 Night, Multiple intruder

2) i-LIDS Dataset: The Imagery Library for Intelligent
Detection Systems (i-LIDS) dataset [21] is the standard bench-
mark for video surveillance systems. There are 10 videos with
1000 frames each, five for the day, and five for the night. The
image size is 390x220. The scenario is an intruder entering a
restricted area and trying to bypass the fence.

3) ISL-ISZM Dataset: Intelligent Systems Laboratory
Dataset for Industrial Sterile Zone Monitoring (ISL-ISZM)
has 15 videos, 10 for the day, and 5 for the night with
1000-2300 frames. The image size is 720x480. The videos
were constructed by mimicking the i-LIDS dataset challenges.
The scenario consists of an intruder entering a restricted
area in an industrial setting. The dataset and training
frames can be found at https:/drive.google.com/file/d/
1QWCZBa6DIbIK8pOgjsDrqr-lmy0kq7-C/view ?usp=sharing.
Table I shows a detailed description of the i-LIDS and Our
datasets with challenges.

B. Implementation Details

SFDNet is trained on Intel Core i5 Hardware with 8 GB
RAM with a low-end NVIDIA GTX570 GPU. It is imple-
mented in Keras [27]. SFDNet was trained for 50 epochs
on 50 frames with 20% validation frames, i.e., 10 from 50
training frames. It has 11.2 Million parameters in total with

Table 11
ABLATION STUDY USING CDNET WHERE SSCL, SACL, AND RD ARE
STACKED STANDARD CONVOLUTIONAL LAYER, STACKED ATROUS
CONVOLUTIONAL LAYER, AND RESIDUAL-DENSE BLOCKS STRATEGY. 1,
2,3, 4, AND 5 REFER TO THE BLOCK NUMBER.

Atrous Spatial Feature Extractor (ASF'E)
SSCL SACL RD F
123,45 B X 0.8941
- 12,345 v’ 0.9224
1,234 5 v’ 0.9264
12,3 45 v’ 0.9388
1,2 34,5 v’ 0.9541
1 2,345 v’ 0.9407
Pyramid Upsampling Network (PUPN)
Upsampling ~ Pyramid F
BIConv X 0.9541
BI v’ 0.9328
TConv v’ 0.9534
BIConv v’ 0.9747

7.6 Million as learnable. The total number of Giga Floating
Points Operations (GFLOPs) is 0.66. Regularization method
RMSProp and 0.001 learning rate was used. A spatial dropout
of 0.4 was applied.

The SFDNet was trained for each video sequence of the
CDNet. The training frames and respective ground-truths for
the CDNet were provided by CascadeCNN authors!. Cas-
cadeCNN provided subsets of 50 and 200 training frames.
The training and testing details for i-LIDS and our dataset
is shown in Table 1. The ground-truths (50 training frames)
for both datasets were made via the Interactive Segmentation
tool”. It is assumed that all the possible foreground objects
appear in the limited training frames.

C. Ablation Study

Extensive experiments were performed to demonstrate the
effectiveness of the network design of the SFDNet using
CDNet as shown in Table II. The experiments are split
into two levels, i.e., atrous spatial feature extractor (ASFE)
and pyramid upsampling network (PUPN). In the ASFE, the
network design of stacked standard convolution layers (SSCL),
stacked atrous convolution layers (SACL), and residual-dense
blocks strategy (RD) were evaluated. In the PUPN design,
however, the effectiveness of the upsampling technique and
pyramid structure was demonstrated.

Initially, pretrained VGG-16 (1st row) with 5 SSCL blocks
were employed. Then, all the VGG-16 blocks were replaced by
SACL blocks (2nd row). Later, experiments were performed
by supplementing SSCL and SACL blocks together with
hybrid training. SFDNet benefits from SSCL, SACL, CT, and
hybrid training (5th row). Its F-measure was 5% more than
the only SSCL model (1st row).

The pyramid upsampling network (PUPN) was switched
with other upsampling techniques (UP), i.e., bilinear interpo-
lation BI (2nd row) and transposed convolution TConv (3rd

Uhttps://github.com/zhimingluo/MovingObjectSegmentation
Zhttp://www.cs.cmu.edu/ mohitg/segmentation.html
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Table III
QUANTITATIVE ANALYSIS ON ALL THE CATEGORIES OF THE CDNET. THE PERFORMANCE METRICS ARE RECALL R, SPECIFICITY Sp, FALSE POSITIVE
RATE F'PR, FALSE NEGATIVE RATE F'N R, PERCENTAGE OF WRONG CLASSIFICATIONS PW C, PRECISION P, AND F-MEASURE F'.

Algorithm # Training Frames R Sp FPR FNR PWC P F
SFDNet (ours) 50 0.9448  0.9997 0.0002 0.0551  0.1248  0.9733 0.9580
SFDNet (ours) 200 0.9698  0.9999  0.0001 0.0301  0.0653 0.9807 0.9747

MS-ST 630-5600 0.9650  0.9995 0.0005 0.0350 0.1123  0.9657 0.9671
M2DC4 630-5600 0.9701  0.9991 0.00012  0.0224 0.246 0.9661 0.9615

3D CNN-LSTM 630-5600 - - - - - 0.94.02
MVRF-CNN 630-5600 - - - - - - 0.9489
CascadeCNN 200 0.9506  0.9968 0.0032 0.0494  0.4052 0.8997 0.9209
RT-BGS - 0.7890  0.9961 0.0039 0.2110  1.0722  0.8305 0.7892
DeepBS 200 0.7545  0.9905 0.0095 0.2455  1.9920 0.8332 0.7458
SuBSENSE 200 0.8124  0.9904  0.0096 0.1876 1.678 0.7509 0.7408
IUTIS-5 200 0.7849  0.9948 0.0052 0.2151  1.1986  0.7717 0.8087

Table IV

F-MEASURE OF EACH CATEGORY OF THE CDNET SUCH AS BASELINE B, BAD WEATHER BW, DYNAMIC BACKGROUND DB, CAMERA JITTER C'J, LOW
FRAME RATE LF R, NIGHT VIDEOS NV, PAN TILT ZOOM PTZ, THERMAL Th, SHADOW Sh, INTERMITTENT OBJECT MOTION IOM, AND TURBULENCE

Algorithm B cJ DB 10M Sh Th BW LF NV PTZ T Average
SFDNet (ours) 0.9938 0.9857 09888 0.9897 0.9938 0.9808 0.9879 0.9294 0.9659 09817 0.9273 0.9747
MS-ST 0.9895 0.9802 09791 0.9893 09874 0.9840 0.9846 0.9013 0.9390 09314  0.9568 0.9657
M2DC4 0.9897 0.9645 09789 0.9637 09813 09833 0.9609 0.8994 0.9489 09582  0.9488 0.9615
3D CNN-LSTM 0.9470  0.9525  0.9502 - 0.9446  0.8870  0.9583  0.9660 - - 0.9624 0.9402
MVRF-CNN 0.9632  0.9507 0.9590 0.9660  0.9579 - 0.9480 - 0.8963 - - 0.9489
CascadeCNN 09786 0.9758 09658 0.8505 0.9593 0.8958 0.9431 0.8370 0.8965 09168  0.9108 0.9209
RT-BGS 0.9604 0.8388 09489 0.7878 09478 0.8219 0.8260 0.7888 0.5014 0.5673  0.6921 0.7892
DeepBS 0.9580 0.8990 0.8761  0.6098 09304 0.7583 0.8301 0.6002 0.5835 0.3133  0.8455 0.7458
SuBSENSE 09503  0.8152 08177 0.6569 0.8986 0.8171 0.8619  0.6445 0.559 03476  0.7792 0.7408
TUTIS-5 0.9567 0.8332 0.8902 0.7296 0.8766 0.8303 0.8248 0.7743  0.5290 0.4282  0.7836 0.7717
Table V SFDNet gets an average of F' of 0.9747 and PWC of

QUANTITATIVE ANALYSIS USING RECALL R, PRECISION P AND
F-MEASURE F'.

i-LIDS dataset Our dataset
Algorithm R P F R P F
SFDNet (ours) 1.0 1.0 1.0 1.0 1.0 1.0
SuBSENSE 0.80 0.80 0.80 | 0.73 0.73 0.73
ML-RPCA 1.00 050 0.66 | 1.00 0.50 0.66
DeepBS 0.70  0.70 0.70 | 0.66 0.66 0.66
RT-BGS 0.80 0.80 0.80 | 0.86 0.86 0.86

row). The proposed PUPN (4th row) performed 2-5% better
than BI and TConv.

D. Quantitative Analysis

1) Change Detection Dataset (CDNet): Table III shows
the quantitative analysis of SFDNet and baselines on the
CDNet using seven performance metrics. CDNet defines strict
pixel-wise performance evaluation as compared to frame-
level. Thus, CDNet is better in bench-marking the foreground
detection algorithms.

Most supervised algorithms were trained for 200 frames ex-
cept MS-ST and M2DC4, which were trained for significantly
more frames (630-5600). This is due to the use of temporal
data for ConvLSTM. Each video in CDNet comprises of 900-
8000 frames. Hence, the number of test frames varies from
700-7800. For example, the highway sequence in the baseline
category consists of 900 frames. Thus, 200 frames were used
for training and 700 frames for testing.

0.0653, which is within the error margin of human annotation
accuracy [17]. SFDNet outperformed the baselines in 5 out
of 7 performance metrics. However, the difference is quite
low, e.g., recall R of M2DC4 (0.9701) is 0.003 more than
SFDNet (0.9698). False Negative Rate F'NR of M4DC4
(0.0224) is 0.0077 less than SFDNet (0.0301). Despite this,
SFDNet performed significantly better than baselines in other
categories such as F-measure and precision. 3D CNN-LSTM
and MVRF-CNN only reported F-measure.

Table IV shows the category-wise F-measure F of SFDNet
and the baselines. SFDNet is significantly better than the
baselines on 9 categories of CDNet. SFDNet achieved more
than 98% F-measure on the 8 categories. It achieved 96% F-
measure on the night category, which is considered the most
challenging for video surveillance systems. The turbulence T
category is also challenging due to the very small foreground
object. 3D CNN-LSTM and MvRF-CNN did not test all the
categories of CDNet.

2) i-LIDS Dataset: Table V shows the quantitative analysis
of SFDNet and baselines on the i-LIDS dataset. Unlike CDNet,
the i-LIDS dataset employs soft frame-level evaluation as com-
pared to pixel-wise prediction. An intruder must be detected
for atleast 75% of a video to be marked as successful [21].
For instance, each video weighs 10% of the final F-measure.
SuBSENSE detected an intruder in 8 videos. Thus, its F'=80%.
ML-RPCA detected an intruder in all videos. However, it gave
false positives, decreasing its overall performance.

Supervised algorithms suffered due to a strong camouflage
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Figure 3. The qualitative comparison of SFDNet and the supervised baselines
on the CDNet. The columns show input, ground-truth, and foreground masks
of the SFDNet, CascadeCNN, and DeepBS, respectively. Each row shows
the different categories of the CDNet such as baseline, bad weather, camera
jitters, dynamic background, and shadows, respectively. The red boxes refer
to false positives or false negatives from baselines. Green boxes refer to true
positives from SFDNet.

effect in night-time videos. RT-BGS and DeepBS detected an
intruder in, respectively, 8 and 7 videos. MS-ST and M2DC4
were not evaluated due to their high requirement of labeled
training data. SFDNet detected an intruder in all the videos
without any false positives.

3) Our Dataset: Table V shows quantitative analysis on
our dataset using the i-LIDS dataset criterion. It is more
challenging than the i-LIDS dataset. Each video weighs 6.66%
of the final F-measure. SUBSENSE detected an intruder in all
day-time videos with illumination noise and shadows. But, it
detected an intruder in one night video only due to a strong
camouflage effect. Thus, its F'=73%.

Although ML-RPCA detected the intruder in all day and
night videos, it suffered due to illumination changes and
the shadow of the intruder, severely decreasing its overall
performance. RT-BGS and DeepBS detected the intruder in
13 and 10 sequences, respectively. The SFDNet detected an
intruder in all the videos.

E. Qualitative Analysis

1) Change Detection Dataset (CDNet): 1t is evident from
Figure 3 that the SFDNet (3rd column) foreground masks
are comparable with the ground-truths. It was able to detect
the foreground object precisely. The detection of foreground
objects in challenging situations shows promise. The baselines
were unable to detect the foreground objects precisely. It is
worth mentioning that SFDNet was only trained for 50 training
frames, while the baselines might be trained for at least 200
training frames.

CascadeCNN (4th column) detected foreground objects
partially in thermal sequences. It was unable to segment the

object geometry precisely, e.g., in bad weather (2nd row) and
thermal sequence (6th row). DeepBS (5th column) did well
on some challenges of the CDNet like baseline and dynamic
background categories. It could not extract foreground details.
It partially detected the foreground object in shadows (5th row)
and thermal (6th row) sequences. It even gave false positives
in the thermal sequence (6th row).

2) i-LIDS Dataset: Figure 4a shows the foreground masks
from SFDNet and the baselines. Each column depicts different
video sequences from day and night. The background setting
offers the challenge of illumination changes and dynamic
background, while the foreground object comes with the chal-
lenge of speed-variance, scale-variance, shadows, camouflage,
and static intruder. The IR camera videos are also challenging
for baselines. This is because currently available datasets like
CDNet do not test algorithms against the IR camera.

The baselines showed similar trends towards the challenges
of illumination changes, shadows, and camouflaged intruders.
DeepBS (2nd row) performed well in the day sequences. It
suffered from the camouflage effect in IR videos. It detected
a distinct part of an intruder. ML-RPCA (3rd row) performed
well among baselines by detecting the intruders in both
datasets. However, it gave false positives owing to illumination
changes shadows. RT-BGS (4th row) performed well on the
day sequences. It missed the intruders in the night sequences.
SFDNet detected intruder with precise object details.

3) Our Dataset: Our dataset offers strong challenges of
illumination changes, shadows, and camouflaged effect. Like
the i-LIDS dataset, baselines showed similar trends on our
dataset as shown in Figure 4b. DeepBS (2nd row) could not
cope with shadows and camouflaged effect. It detected the
shadow of an intruder in day sequences. It was unable to detect
an intruder in night videos due to the camouflaged effect. Like
the i-LIDS dataset, ML-RPCA (3rd row) performed well with
false positives due to illumination and shadows.

RT-BGS (4th row) only detected distinct parts of the intruder
from a background as shown in the red box. Similarly, in the
day sequence of our dataset, it missed detecting the intruder’s
legs shown as a red box. DeepBS and RT-BGS suffering from
the camouflage effect at night sequences may be due to the
use of a background model for training the CNN model.

SuBSENSE (5th row) followed similar trends to other
baselines and detected the shadow of the intruder. It was
challenged by the night videos as it only segmented distinct
parts of the camouflaged intruder from the background. The
SFDNet was able to detect an intruder precisely (6th row)
and differentiate between its shadow as well. Similarly, it was
able to detect the camouflaged intruder in the night videos.
Additionally, it did not give any false positives. The video
results can be accessed at https://drive.google.com/open?id=
1PjFPQs6a2Y6qzymBSVcTB49vI3Ze5120.

F. Computational Complexity

Table VI shows the computational complexity of SFDNet
and baselines in terms of training time, number of parameters,
and testing speed in frames per second (fps). The analysis
is performed on the NVIDIA GTX1080Ti GPU. It is evident
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Figure 4. Qualitative results of the SFDNet (6th row) with baselines such as DeepBS (2nd row), ML-RPCA (3rd row), RT-BGS (4th row), and SuBSENSE
(5th row). Red boxes refer to false positives or false negatives from baselines. Green boxes refer to true positives from SFDNet.

Table VI The trained models are scene specific, i.e., a model can only
COMPUTATIONAL COMPLEXITY ON 320x 240 IMAGE SIZE. perform better in the specific trained background setting. The
Method Training Gme 7 Parameters  Testing speed algorithm requires a minimum low-end GPU to perform real-
SFDNet (ours) 12 minutes 7.3 Million 32 fps time. The authors wish to integrate SFDNet into other high-
MS-ST 90 minutes >14 Million 1T fps level tasks of video surveillance systems such as abandoned
M2DC4 120 minutes  >11 Million 17 fps object detection and illegally parked vehicle detection in the
3D CNN-LSTM 80 minutes 2.9 Million 24 fps f
MVRF-CNN | >90 minutes 8.6 Million 25 fps uture.
DeepBS 90 minutes - 22 fps
RT-BGS - - 24 fps
SuBSENSE - - 2 fps REFERENCES
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