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ABSTRACT Most Driver Status Monitoring (DSM) systems consist of spatial features extractions and
temporal status recognition in sequence. Extracting the spatial features, which include driver facial behavior
such as eye closing and mouth opening, generally requires considerable computation. It causes DSM systems
to lose the valuable instantly-occurring driver facial information during real-time processing. Loss of facial
information affects the accuracy of the system, and its impact is more severe on restricted computing
resources. To solve this problem, this paper proposes an Adaptive Batch-Image (ABI) based DSM (ABI-
DSM) system. The ABI enables the DSM system to use images captured in real-time while the DSM process
previous input images. For real-time operation on a lightweight GPU-equipped Single-Board Computer
(SBC), the ABI-DSM system is designed as follows. First, the system uses the driver’s facial behavior to
reduce the dimension of the time-series data for recognizing the status of the driver. The second, detection
and tracking of driver’s faces are not used for facial behavior recognition. Also, the system works with
PydMobileNet, which has lower parameters and FLOPs than MobileNetV2, for facial behavior recognition.
Experiments show that the ABI-DSM systems based on MobileNetV2 and PydMobileNet perform better
than others in terms of both FPS and Precision. In particular, the PydMobileNet-based ABI-DSM system
outperforms competitors when the size of Batch-Image is over six images.

INDEX TERMS MobileNet, PydMobileNet, long short-term memory, driver status monitoring, drowsy,

fatigue, distraction, single board computer.

I. INTRODUCTION

To reduce traffic accident casualties caused by distracted
and drowsy driving, many researchers have published works
investigating vision-based driver assistance systems. Driver
status recognition, along with vehicle, pedestrian, sign, and
lain line detection, is one of the actively studied areas in
the automotive industry. Vision-based driver monitoring sys-
tems are not intrusive because they use a mounted cam-
era, unlike systems based on physiological measures that
require the attachment of Electroencephalography (EEG) and
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Electrocardiography (ECG) sensors to the driver’s body [1].
Although wearable devices with EEGs or ECGs recently have
been released, they are generally not capable of sufficiently
reducing vehicle-induced interference that influences data
quality [2]. Vision-based systems also have the advantage
of using driver facial behaviors directly related to driver’s
status in contrast to in-vehicle sensor-based systems using
indirect information, such as steering wheel movement or
the standard deviation of the lane position. Thus, in-vehicle
sensor-based and physiological signal-based systems can be
influenced by external factors, while vision-based systems
are rarely affected by such factors [3]-[5]. The research
and development of vision-based driver monitoring systems
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have become more active owing to the recent growth of the
compact camera, vehicular ISP (Image Signal Processor), and
mobile GPU (Graphics Processing Unit) markets [6].

Driver monitoring systems had traditionally used hand-
crafted descriptors and Machine Learning (ML) classifiers
before Deep Learning (DL) recently came into the spot-
light. Hand-crafted descriptors are features extracted from
images using a manually-defined algorithm based on expert
knowledge [7]. Notable examples of hand-crafted descrip-
tors algorithms are Haar-like features, Local Binary Pattern,
Scale Invariant Feature Transform, Histogram of oriented
Gradients. Popular ML classifiers include k-Nearest Neigh-
bor, Decision Trees, Support Vector Machine (SVM), and
Cascade Classifiers [8]—[15]. The training of ML parameters
is conducted by using extracted descriptors and pre-defined
labels. Depending on the descriptor, the performance of the
classification is not consistent. It is necessary to determine
which descriptor and classifier are more proper for each pur-
pose. The more detection, tracking, and recognition modules
the traditional method has, the more descriptors and classi-
fiers are required to optimize performance of the system [16].

The ML-based approach is up to trial, error, and the engi-
neer’s judgment to determine proper descriptors and classi-
fiers. On the other hand, the DL-based approach discovers the
underlying patterns and descriptors that attempt to describe.
The DL network also can work as a classifier in the process
of training the DL model [16]. However, DL requires a large
dataset to be representative and a sufficiently large model to
describe the data. Early DL area was stuck in a proverbial
dark age for years due to the vanishing gradient problem,
the need for massive computing resources, and the absence
of large datasets. The victory of AlexNet on the ImageNet
Large-Scale Visual Recognition Challenge 2012 (ILSVRC
2012) [17] was a trigger for inspiring research to alleviate
these problems. DL began to get attention in Computer Vision
and has outstanding achievements in various fields, including
art, music, games, and natural language. With this trend,
DL has become mainstream in the automotive industry, where
ML-based technology had been dominant.

Moreover, researches using images and DL based on lap-
tops and embedded boards equipped with GPU have become
more active because of the popularization of mobile GPUs
[18], [26], [31]. Outstanding examples among the studies
using mobile GPU are the Driver Drowsiness Detection Net-
work (DDDN) based drowsiness detection [26] and Gaussian
Mixture Model (GMM) based distraction detection algo-
rithms [18]. DDDN-based drowsiness detection algorithm
combines Convolutional Neural Networks (CNN) of two
streams for eye and mouth for drowsiness detection. CNN
of each stream has the advantage of being able to focus on
areas that correspond to the eye or mouth. The architecture of
DDDN enables real-time processing at the Jetson TK1. It also
shows 93.84% drowsiness detection accuracy despite the use
of uncomplicated CNN. GMM-based distraction detection
algorithm can recognize the subdivided activities of a driver
by using a segmented image based on GMM, even though
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they used a single CNN model. The detection accuracy of
distraction caused by phone calls and text messages while
driving is 93.2% and 94.5%, respectively. Also, driver dis-
traction recognition can be processed at real-time over ten
frames per second (FPS) on mobile GPU.

Despite these studies of conspicuous performance, it is
necessary to study the driver status monitoring system on
a light-weight SBC because the devices used on previous
works are still expensive in commercialization. The work in
[19] showed the potential for deploying driver status monitor-
ing systems on light-weight SBCs. But, this simultaneously
showed that real-time operation of the system is difficult on
SBCs without GPUs. Compared to the high-end environ-
ment, the FPS of driver status recognition is significantly
low on SBCs with limited computing resources. Because the
accuracy of the system is dependent on real-time processed
frames per second (PFPS), it is easier to lose the valu-
able instantly-occurring facial behavior of the driver when
the time interval of the driver’s facial behavior recognition
increases. Eventually, this leads to a decrease in the accuracy
of the driver’s status recognition.

This work proposes an Adaptive Batch-Image based Driver
Status Monitoring (ABI-DSM) system to alleviate this prob-
lem. The proposed system consists of Batch-Image Gener-
ation (BIG) and Batch-Image Processing (BIP) blocks. The
BIP block has Facial Behavior Recognition (FBR) and Driver
Status Recognition (DSR) modules. Using Batch-Image (BI),
which is a batch of images accumulated between image
processing intervals, enables the FBR module to get the
information that can be missed during real-time processing.
DSR module adaptively updates time series data using RBF
module results of various sizes depending on the computing
environment.

Although the Batch-Image helps to minimize the loss of
information, processing Batch-Image that has more images
occupies more memory. Memory size is one of the major
factors in price competitiveness for commercialization. For
example, if the memory of the Raspberry Pi and Jetson Nano
doubles, their price is about 1.5 times higher. Then, it is neces-
sary to reduce the amount of used memory without accuracy
decrease. For the reduction of memory occupied by DL mod-
els, the design of ABI-DSM considers the following: First,
the driver’s facial behavior is used as the input of the DSR
module to minimize the model size of the Long Short-Term
Memory (LSTM) module for recognizing the driver’s status
[21]. Next, the FBR module recognizes the driver’s facial
behavior from the image without using face detection and
tracking. Finally, the FBR module uses PydMobileNet [22],
which is an advanced version of MobileNet models [23], [24]
with stable performance in terms of accuracy and real-time
processing, to process batch images on resource-restricted
SBC.

The contributions of this paper can be summarized as
follows.

« A novel struct system is applied to driver status recogni-

tion. Unlike existing studies that require re-training the
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recognition model depending on the computing environ-
ment, the proposed system can recognize the driver sta-
tus on a variety of materials without loss of the valuable
information.

o PydMobileNet, proposed in our previous work,
is applied to recognize driver facial behaviors. Exper-
iments have demonstrated that the ABI-DSM system
can be implemented without accuracy decrease by
using PydMobileNet, which has a relatively small num-
ber of parameters compared to MobileNet, and that
PydMobileNet is more efficient in SBC with lower
specifications.

Section II describes related works and the motivation for
this study. Details of the proposed ABI-DSM system, Pyd-
MobileNet, and LSTM models are in Section III. Section IV
describes and discusses the experiments.

Il. MOTIVATION

A. THE STRUCTURE OF DRIVER STATUS

MONITORING SYSTEM

The types of vision-based driver status monitoring systems
listed in Table 1 are as follows: First, most systems use the
detection of parts of the face, including the eyes and mouth,
and extract features from the patch image of the detected

TABLE 1. Related Works on the driver monitoring system.

Detection Used Library Environment
Detection | Face | Land- | or CPU |GPU |FPS
mark | ML/DL Models
[25] | Drowsy AlexNet, -k - -
VGGNet,
FlowNet
[26] | Drowsy v v MTCNN, Jetson | Jetson | 14.9
DDDN TX1 TX1
[27] | Distraction | v* v Dlib, VGGNet |H** |H 89.2
[28] | Distraction | v* MTDNN H H 33.0
[29] | Drowsy v v MCT Adaboost, | H H -
LBF Regression
[30] | Drowsy v v Dlib, CNN, |H H 63.7
Viola-Jones
Method
[31] | Distraction GoogLeNet Jetson | Jetson | 11
TX1 TX1
[32] | Drowsy v v Dlib, MTDMN | H H -
[33] | Fatigue v v MTCNN, CNN |H H -
[18] | Distraction AlexNet, H L*#* | 14
GoogLeNet,
ResNet
[34] | Fatigue v v MTCNN, ESR-|H H -
Net, MSR-Net
[35] | Drowsy v Dlib, FHOG, | H - 17
MTCNN,
SqueezeNet,
CNN
[36] | Fatigue v v Dlib, SVM, LR, |- - -
DT, NB
[37] | Drowsy v v SVM, DCCNN |H H 20.1
[38] | Fatigue v v Dlib, MTCNN, | - - -
SVM, ANN
[39] | Fatigue v v Dlib, Customed | H H 24.3
YOLOV3-tiny

* -1 Not specified
** H: High performance
##% L: Low performance
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face parts. ML or DL classifiers recognize the driver status
from the extracted features [26], [27], [30], [32]-[35]. The
obtainable examples are eye closures and yawns. There are
many open datasets of face parts, and it is relatively easy to
collect images of face parts through web surfing. However,
generally requiring individual feature extractors and detectors
is a drawback, as this approach has limited accuracy and is
vulnerable to occlusion.

Second, most other systems use facial landmarks extracted
from the face image and the geometric information of the
lines connecting facial landmarks [28], [29], [36]-[39]. This
approach has the advantage of obtaining eye closing and
mouth opening information by regression analysis from geo-
metric features, unlike the former model that uses feature
extraction and classification. Additional examples of features
are the percentage closure of eyes, eye aspect ratio, mouth
aspect ratio, eye feature vector, mouth feature vector, and eye
closing duration. However, these geometric features depend
on the precision of the positioning of landmarks and this is a
challenging task that is still studied actively.

Approaches using a chain of face, eyes, mouth, and facial
landmark detections have the potential to transmit errors
from the former module to the following modules. For
the ML-based approaches that have lower accuracy than
DL-based approaches, potential errors have a more signifi-
cant impact on the chain of detections based on ML. Imple-
menting DL-based detection chains in the vehicle is typically
difficult because of limited computing resources. To resolve
these problems, a few researchers proposed methods not
using detections of facial parts, such as the face, eye, mouth,
and facial landmarks. By adding a multi-task layer to the
CNN base, these methods obtain facial behaviors, such as
head orientation, eye closing, and mouth opening at once.
These obtain the results of facial behavior recognition that
is not dependent on the detection of face, eyes, and mouth.
Also, improving the processing performance is possible by
reducing the latency caused by detecting face, eyes, and
mouth [18], [19], [25].

However, these previous works have the follow-
ing constraints. These systems, generally depending on
high-performance GPUs, do not work on a SBC in real-
time. The accuracy of driver status recognition becomes
lower as the processing latency increases. Additionally, adap-
tively applying a trained model that recognizes the driver
status on devices of different specifications is challenging.
The batch-Image generated from BIG modules allows the
ABI-DSM system to operate adaptively on a variety of
devices that have different processing latency.

B. PydMobileNet FOR RECOGNIZING FACIAL BEHAVIORS
Since AlexNet won ILSVRC 2012, a variety of models, such
as VGGNet [40] and GoogLeNet [41], have been introduced.
After these newer models outperformed their predecessors in
the following ILSVRC 2014, designing networks deeper and
wider has become a trend to acquire superior performance.
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VGGNet is a deep version of AlexNet, and GoogLeNet is a
deep and wide model.

o VGGNet is an advanced version of AlexNet and has
a structure like AlexNet in terms of sequentially using
convolution, pooling, a fully-connected layer, and a soft-
max layer. This model uses factorized convolution with
a stack of 3 x 3 filters instead of large-size filters, such
as 5 x 5 and 7 x 7 filters. Consequently, VGGNet
outperforms AlexNet by designing its structure in an
uncomplicated manner, like AlexNet, but deeper.

o On the other hand, GoogLeNet has the Inception module
instead of the fundamental convolution layer. The Incep-
tion module is designed with a combination of different
kernels and has fewer parameters, considering the intri-
cate structure, because it uses primary and spatial fac-
torized convolution. The spatial factorized convolution
is another alternative to the 3 x 3 convolution. Unlike
the factorized convolution previously mentioned, spatial
factorized convolution is a stack of 3 x 1 and 1 x 3
convolutions. Due to many other factors, GoogleNet is
complicated but has a lightweight structure 12 and 36
times smaller than AlexNet and VGGNet, respectively.

To cope with the resource restrictions in the FPGA

and SBCs, compressing and optimizing a model has
become another trend. SqueezeNet [42], Xception [43], and
MobileNet [23], [24] are notable models. Their model has a
stack of compressed module layers. SqueezeNet and Xcep-
tion are built from the base of existing models such as
AlexNet and GoogleNet. MobileNet is an optimized model
across both the model structure and module layers comprising
the model.

o The design base of SqueezeNet is the structure of
AlexNet, like VGGNet. The Fire module of SqueezeNet
is a substitution of the convolution layer of AlexNet,
and it consists of a squeeze convolution layer and an
expanded layer. The squeeze convolution layer performs
the function of reducing the channel of inputs. The
expanded layer is like the residual convolution layer.
Applying the Fire module reduces the computational
cost consumed by the primary 3 x 3 convolution. Con-
sequently, SqueezeNet has 50 times fewer parameters
than AlexNet and can occupy less memory, making it
possible to deploy it on a FPGA.

« Xceptionis alightweight version of the Inception model,
made smaller by using the depthwise separable convo-
lution (DWConv). DWConv was primarily introduced
in [44], but it was applied only to parts of the over-
all model. Xception uses the depthwise separable filter
scaled up over the model, named DWConv. By using just
an extreme version of the Inception module instead of
the primary Inception module, Xception built from the
base of InceptionV 1 has a number of parameters similar
to InceptionV3. Furthermore, the accuracy of Xception
is greater than that of InceptionV3.

« MobileNet is the designed model by optimizing both
macro and micro components. In the micro realm,
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MobileNetV1 uses the DWConv instead of the primary
convolution. MobileNetV2 substitutes the DWConv of
MobileNetV1 with an Inverted Residual module. The
Inverted Residual module is a deformed Residual mod-
ule by varying the channel depth values of the in/output
layer and hidden layers. In the Inverted Residual mod-
ule, the first layer with a 1 x 1 convolution reduces
the number of input channels to the 3 x 3 depthwise
convolution layer that consumes the most computation
time. It similarly works to the squeeze convolution layer
of SqueezeNet. In the macro respect, the MobileNet does
not use a pooling layer except for the last layers. Instead,
it uses a stride of depthwise convolution to reduce the
width and height of the feature maps. MobileNetV?2 has
fewer parameters than the ShuffleNet and NasNet-A.
MobileNetV2 also requires fewer operations (FLOPs)
than the SqueezeNet, and it outperforms SqueezeNet.

Inception, Xception, SqueezeNet, and MobileNet have
stacks of the Inception, Xception, Fire, Inverted Residual
modules, respectively. The commonalities of models imple-
mented by stacks of modules since AlexNet are summarized
as follows: First, decrease the input dimension of the expen-
sive 3 x 3 and 5 x 5 convolutions by the 1 x 1 convolution. Itis
a bottleneck and has the effect of reducing the computation
cost of the 3 x 3 and 5 x 5 convolution layers. The first 1 x 1
convolution of Inception, Xception, and SqueezeNet modules
work as the bottleneck. The squeeze convolution layer of the
Fire module is also included.

Next, there is dimensional expansion after the 3 x 3
and 5 x 5 convolutions. The dimensional expansion gener-
ally generates a wider variety of features. Because repeated
dimensional expansion results in an excessive increase in
the computational cost, the dimensional expansion is not
applied to every layer in the AlexNet and VGGNet. Alter-
natively, the expanded dimension is shrunken by a 1 x 1
reduction convolution of the same module or bottleneck of the
following module. In the Inception and Xception modules,
the dimension is expanded by concatenating the outputs of
3 x 3 or5 x5 convolutions. The Expansion and Expand layers
respectively expand the dimensions of the Inverted Residual
and Fire modules.

Lastly, those modules include a residual layer. Although
each module has different structures, such asa 1 x 1 convo-
lution or bypass connection, they perform the same role as an
Identity Mapping proposed in the ResNet. Identity Mapping
maintains information that is likely to be lost by bringing
features from the previous layer to the next layer.

Among the characteristics of InceptionNet and
MobileNetV2, motivations of PydMobileNet are as fol-
lows.InceptionNet uses convolutions of different sizes in
the same module layer. Using convolutions of different-size
kernels at the same time in a module allows the module to
obtain more varied spatial information from the input layer.
The relatively high accuracy of the Inception-like models
proves it. MobileNetV2 has an uncomplicated structure. It is
sufficiently lightweight to be used in mobile devices.
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To process Batch-Image in real-time and achieve reli-
able performance on a SBC, the design of PydMobileNet
takes into account both the commonalities and distinguishing
above. The base structure of PydMobileNet is the same as
that of MobileNetV2. The PydResidual module substitutes
the inverted Residual module, and this module has 3 x 3, 5x 5,
and 7 x 7 depthwise separable convolutions in parallel. The
details of PydMobileNet are presented in Section III.

Ill. PROPOSED DRIVER STATUS MONITORING SYSTEM

The Adaptive Batch-Image based Driver Status Monitoring
(ABI-DSM) system has Batch-Image Generation (BIG) and
Batch-Image Processing (BIP) blocks, as shown in Figure 1.
Through socket communication, the BIG block sends a batch
image whenever the BIP block requests one. While the BIP
block recognizes the driver status, the BIG block generates a
batch image (BI). Each block operates on a different thread.

( The Adaptive Batch-Image based )

Driver Status Monitoring System

Batch-Image Generation Block

Image Bl Gen Socket
Grabber — Modulé —> Comm.
Module Module

Camera

Driver Facial

. Socket
Status Status || Behavior || Comm.
Print Recog.

Recog.
Module Module Module

Batch-Image Processing Block
\ J

FIGURE 1. The Adaptive Batch-Image based Driver Status Monitoring.

The hardware specification of the ABI-DSM system is
NVIDIA Jetson Nano with Raspberry Pi NoIR Camera
V2.0 and 850nm wavelength infra-red led light. The eye
blink duration is about 239.3(%20.2) millisecond, and facial
behavior needs to be recognized more than twice during this
duration [19], [20]. Atleast 9.13 FPS performance is required
for driver status recognition. NVIDIA Jetson Nano board
(Jetson Nano) satisfies this prerequisite. Jetson Nano is a
GPU-equipped SBC, and its price is only about twice that
of a Raspberry Pi 4 with the same memory size. Raspberry
Pi NoIR Camera is connected to NVIDIA Jetson Nano via
Camera Serial Interface (CSI) with a low load of CPU and
memory rather than a USB interface. Because it has no IR
filter, it is possible to capture images at night with 850nm
wavelength infra-red light.

A. BATCH-IMAGE GENERATION BLOCK

The BIG block consists of Image Grabber (IG), Batch-Image
Generation (BG), and Socket Communication (SC) modules.
The IG module of BIG on the Jetson Nano captures twenty
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images per second from a camera. Whenever the IG module
captures the image, it sends this to the BG module. The BG
module appends the received image from the IG module to the
batch image (BI). Each SC module in the BIG and BIP blocks
has two ports. Via one port, the Request and Acknowledge
signals are sent. Via the other port, the BIG block sends the
batch image to the BIP block.

B. BATCH-IMAGE PROCESSING BLOCK

The BIP block consists of Facial Behavior Recognition
(FBR), Driver Status Recognition (DSR), and SC modules.
The SC module of the BIP block requests the batch image
to that of the BIG block and transfers the received batch
image to the FBR module. The FBR module recognizes the
facial behavior of the batch size from the batch image. The
DSR module receives the facial behaviors batch from the
FBR module and recognizes the driver’s status. To better
solve the problems mentioned in Section I, we design the
BIP block in consideration of several goals. The first goal
is to optimize the CNN model recognizing facial behaviors
from the batch image. The next goal is to reduce the number
of fully connected nodes that demand more memory. Finally,
each model is trained by Multi-Task Learning (MTL), such
that FBR and DSR modules conduct multiple tasks with each
model base. The following describes details of the FBR and
DBR modules.

C. FACIAL BEHAVIOR RECOGNITION MODULE

Although Jetson Nano has GPU cores, a set of batch images
is a burden for computation using a SBC. For batch image
processing under restricted computing resources, reducing
the parameters of a model is helpful. Accordingly, the FBR
module uses PydMobileNet. PydMobileNet is the version
that uses the PydResidual layer as a substitute for the Inverted
Residual layer of MobileNetV2. PydMobileNet has fewer
parameters than MobileNetV2, with similar accuracy.

1) RESIDUAL LAYER

PydMobileNet is based on the architecture of MobileNetV2
and it consists of a stack of PydResidual modules.
MobileNet-like models are generally less accurate than
Inception-like models. As with MobileNet-like models,
Inception-like models consist of a stack of several different
modules. The distinction is that modules in the Inception-like
model use a combination of convolutions with different ker-
nel sizes.

Inspired by this, we designed the PydResidual module
to contain several Depthwise Convolution (DWConv) layers
with different-size kernels instead of using one size, as with
MobileNetV2, as shown in Figure 2. Table 2 describes the
shapes of the input, output, and kernel layers in the PydRedis-
ual module. The DWConv layers of the PydResidual module
share the output of the Depth Expand layer. The outputs of
the DWConv layers are concatenated and become the input
of the Pointwise Convolution (PWConv) layer.
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1x1 EXPConv

BN-RelLU

@ 1x1 EXPConv

@ 7X7 DWConv

3x3 DWConv 4@

@ 3X3 DWConv
“ ® 5X5 DWConv Vk

BN-RelLU

BN-RelLU
1x1 PWConv
BN BN
N N
N %

O

(a) Inverted Residual module layer

O

(b) PydResidual module layer

FIGURE 2. The Structural Comparison between Inverted Residual and
PydResidual Module Layers.

TABLE 2. Details of PydResidual layer.

Layer | Input kernel shape | Output Layer type

1 hxwxd; 12 xd; xdo' | h X w x do” | EXPConv

2 hxwxd, |3%2xd, h X w X do’ | DWConv

3 hxwxd, |5%2xd, h x w X d,’ | DWConv

4 hxwxd, |7%2xd, h xw X d, | DWConv
[h x w x do,

5 hxwxXd,, |- h x w X do"" | Concatenation
hxwx do]

6 hxwxdo [12xdy" xdo|h X wxd, |PWConv

By using several DWConv layers in the PydResidual mod-
ule, the input of the PWConv layer is N times that of the
DWConv layer. N is the number of DWConv layers. To elim-
inate repetitive expansion, the Depth Expand layer of the
PydResidual module expands the input depth (d;) of the
PydResidual module layer by ﬁ instead of the expanding
factor ¢ in the Inverted Residual module. The input depth
(d,") of each DWConv layer in the PydResidual module is N
times smaller than that of the DWConv layer in the Inverted
Residual module. As a result, the concatenated output depth
(d,”) of the DWConv layers is equal to the output depth
of the DWConv layer in the Inverted Residual module. The
output depth (d,) of PWConv is double or equivalent to (d;),
as with MobileNetV2. The output depth (d,) is usually less
than (d,”).

The equations calculating the number of parameters in
the Expand, DWConv, and PWConv layers are Egs. (1),
(2), (3), and (4), respectively. The Expand layer includes
1 x 1 PWConv, Batch Normalization (BN), and RelLLU

VOLUME 8, 2020

Activation (ReLU) layers. The number of 1 x 1 PWConv
layer parameters is the product of the depth values of input
(d;) and output (d,) features maps. The number of BN and
ReLU layers parameters is d,’, respectively. The the Expand
layer parameters (Pg) decrease according to the number
(N) of DWConv layers. The number of the DWConv layer
parameters (Pp) with k, x k, filter is the product of kernel’s
parameters (knz) and d,’. It changes according to the size of
the kernel as well as N. But, the number of PWConv layer
parameters (Pp) does not change. Pjg and Ppg of Egs. (5) and
(6) are the total number of parameters on Inverted Residual
and PydResidual module layers, respectively.

, dg// t x d;
dy =~ =—% 0]
Pr(d;, do/, N) =d; x dol + ngl 2)
Pp(d,  kn, N) = ky> x d,/ + 2d, (3)
Pp(d,”, dy,) = d,” x d, + 2d, 4)
Pig = Pe(d;,d,', 1)+ Pp(d,’, ki, 1)
+ Pp(d,”, dy) &)

N
Ppr = Pr(d,;, dol, N)+ ZPD(do/7 kn, N)

n

+Pp(d,", do) (6)

2) PydMobileNet BASE

PydMobileNet extracts feature for recognizing behaviors
from the driver image. PydMobileNet is an improved version
of MobileNetV2 that has a simple architecture that enables
real-time use. MobileNetV2 consists of a stack of Inverted
Residual modules. By using Depthwise Separable Convo-
lutions in the module, MobileNet-like models have fewer
parameters than other models. Hence, MobileNetV2 can
work in a real-time mobile environment. Similarly, Pyd-
MobileNet not only has fewer parameters but also enables
real-time operations in the restricted environment.

Figure 3 shows a structural comparison between PydMo-
bileNet and MobileNetV2. In Table 3, the input/output shape,
expanding factor (¢), the number of output channels (c),
iteration of the module layer (n), and stride of DWConv (s) on
PydMobileNet are equal to those of MobileNetV2. However,
the PydResidual module replaces the Inverted Residual mod-
ule in the MobileV2 model. Although the parameters of the
PydResidual module by using N DWConv layers increases,
the use of larger kernel convolutions enables the utilization of
more spatial information.

Table 4 lists the number of parameters in the Expand,
DWConv, and PWConv layers for each module in
MobileNetV2. For reducing the number of total parameters,
the module uses the Expand layer in MobileNetV2. However,
Table 4 shows parameters in the Expand layer account for
a quarter of the total number of parameters. Compared to
Table 4, Table 5 shows a slight increase in the parameters
of the DWConv Layer. But, the parameters of the Expand
layer significantly decrease. Consequently, the parameters
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Conv2D 3X3 Conv2D 3X3

Inverted Res. X 1 PydResidual X 1

Inverted Res. X 2 PydResidual X 2

Inverted Res. X 3|

PydResidual X 3
PydResidual X 4

Inverted Res. X 4

Inverted Res. X 3|

PydResidual X 1

(b) PydMobileNet base

Inverted Res. X 3

Inverted Res. X 1

Conv2D 1X1
AvgPool 7X7

(a) MobileNetV2 base

FIGURE 3. The Structural Comparison between MobileNetV2 and
PydMobileNet models.

TABLE 3. Details of PydMobileNet base.

Input Operator Output t |c n |s
2242 x 3 [Conv2D 3 x 3 1122 x32 [- [32 |1 |2
1122 x 32 | PydResidual layer 1122 x16 |3 |16 |1 |1
1122 x 16 | PydResidual layer 562 x24 |6 |24 |2 |2
562 x 24 | PydResidual layer 282 x32 |6 [32 |3 |2
282 x 32 | PydResidual layer 142 x64 |6 |64 |4 |2
142 x 64 | PydResidual layer 142x96 |6 |96 |3 |1
142 x 96 | PydResidual layer 72 x160 |6 [160 |3 |2
72 x 160 | PydResidual layer 72 %320 |6 [320 |1 |1
72 %320 [Conv2D1 x 1 72 x 1280 |- [1280|1 |1
72 x 1280 | AvgPool 7 x 7 1x1280 |- |- |-

of PydMobileNet are fewer than those of MobileNet. The
number of parameters in Table 5 can be calculated by Egs. (2),
(3), and (4). This reduction of parameters proves that sharing
the role of the Expand layer with N DWConv layers and the
Depth Expansion by 1Lv can reduce the burden of expanding
the depth. The number of parameters in Table 4 and 5 can be
calculated by Egs. (2), (3), and (4).

In the Eq. (7), R is ratio between the number of parameters
on Inverted Residual and PydResidual module layers. It is
possible to compare the total number of parameters between
those module layers. R" of Eq. (8) that excepts terms not
required for comparison in Eq. (7) can substitute R. The
PydResidual module layer contains DWConv layers with 3 x
3,5x%5,7x7kernels in this paper. For these sizes of kernels, N
is three and k, = {3, 5, 7}. Given these prerequisites, Eq. (8)
is summarized into Eq. (9). According to Eq. (9), the number
of parameters in the PydResidual module layer is less than
those of the Inverted Residual module layer if d; is above 26.
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TABLE 4. Parameters on MobileNetV2 base.

Layers | Expand DWConv PWConv | Total

1 - - - 928

2 - 352 544 896

3 1,728 1,056 2,352 5,136

4 3,744 1,584 3,504 8,832

5 3,744 1,584 4,672 10,000
6,7 6,528 2,112 6,208 14,848
8 6,528 2,112 12,416 21,056
9,10,11 | 25,344 4,224 24,704 54,272
12 25,344 4,224 37,056 66,624
13,14 |56,448 6,336 55,488 118,272
15 56,448 6,336 92,480 155,264
16,17 155,520 10,560 153,920 | 320,000
18 155,520 10,560 307,840 | 473,920
19 - - - 412,160
Total - - - 2,223,872

TABLE 5. Parameters on PydMobileNet base.

DWConv
Layers |Expand |3 X 3 5X5 7x7 |PWConv | Total
1 - - - - - 928
2 - 352 864 1,632 1,568 4,416
3 576 352 864 1,632 2,352 5,776
4 1,248 528 1,296 2,448 3,504 9,024
5 1,248 528 1,296 2,448 4,672 10,192
6,7 2,176 704 1,728 3,264 6,208 14,080
8 2,176 704 1,728 3,264 12,416 20,288
9,10,11 |8,448 1,408 3,456 6,528 24,704 44,544
12 8,448 1,408 3,456 6,528 37,056 56,896
13,14 18,816 |2,112 5,184 9,792 55,488 91,392
15 18,816 |2,112 5,184 9,792 92,480 128,384
16,17 51,840 |3,520 8,640 16,320 | 153,920 |234,240
18 51,840 3,520 8,640 16,320 | 307,840 | 388,160
19 - - - - - 412,160
Total - - - - - 1,849,280

According to Tables 4 and 5, the parameters of PydMobileNet
are fewer than those of MobileNetV2 after the input depth
becomes 32. The number of parameters in PydMobileNet is
about 83.16% of the number of parameters in MobileNetV2.

P
R= R (N
Ppr

PE(dlv dﬂ/v 1) + PD(dD/v klv 1) + PP(dO//v d{))
Pe(di,dy',N) + 30 Pp(dy, kn, N) + Pp(d,”, dy)

Pe(d;, d,', 1) + Pp(d,, k1, 1)
Pe(di d,/,N)+ YN Pp(d,', kn, N)

di xd, +2d, + k2 xd, +2d,
dix % +2% 4 SN (k2 x %+ 2%)

di+ki? + 4
+25 + Yas G X 7 +25)
di+k*+4
=7 N 2 ®)

Iv(di + 2N + 2 + anl(kn ))

, 3d; + 39

R=—— 9
d; + 91 ©)

2|

3) MULTI-TASK LEARNING

Primarily, independent models are trained for each task to
implement multiple tasks. In this case, the overfitting is likely
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FIGURE 4. Multi-task PydMobileNet.

to occur. On the other hand, Multi-Task Learning (MTL)
enables the model to avoid overfitting by sharing the model
base. Each task works as auxiliary layer for other tasks.
The auxiliary layer generally improve the performance. Also,
a single model simultaneously performs multiple tasks from
a single input data. The MTCNN model is an example model
of using MTL. This model simultaneously detects a face and
facial landmarks in the image.

In the Facial Behavior Recognition module, Multi-Task
(MT) layer recognizes the driver’s facial behaviors from the
output vector of the PydMobileNet base. Facial behaviors
include head orientation (HO), mouth opening (MO), and eye
closing (EC). The categorization of HO includes front, up,
down, left, and right. The MO and EC parameters are a binary
classification for close and open. Figure 4 is the diagram
of Multi-Task PydMobileNet (MT-PydMobileNet) which is
PydMobileNet trained by MTL.

D. DRIVER STATUS RECOGNITION
1) MULTI-TASK LONG SHORT-TERM MEMORY
The Recurrent Neural Network model (RNN) is applicable
in a variety of fields such as speech recognition, language
translation, and human action recognition. RNN models can
extract information that changes along a temporal sequence
from time-series data. Especially, the Long Short-Term Mem-
ory model (LSTM), one of the RNN models, is a model devel-
oped to deal with the vanishing point problem of common
RNN by using regulators. LSTM is trained by MTL (MT-
LSTM) and able to simultaneously recognize three statuses,
including distraction, fatigue, and drowsiness.

Figure 5 shows a Vanilla LSTM model that consists of an
LSTM cell with a single hidden layer. The LSTM cell consists

v

v

© ®

[ Neural Network Layer QO Pointwise Operation —< Copy > Concatenate

FIGURE 5. Vanilla Long Short-Term Memory Structure.
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of the input(i;), forget(f;), cell(¢;), and output(o;) gates. The
LSTM network performs calculations with the input sequence
x = (x1, ..., x) to produce outputs & = (hy, ..., h;) at time
t by using the several gates and states as follows: In Eq. (10),
the ¢, is the activated proportionate sum of the previous cell
state ¢, and cell gate ¢; according to f; and i;. LSTM outputs
the hidden state 4, which is the element-wise product (®) of
the vectors, which are activated c¢; by tanh and o;.

ir = o(Wiixt + bij + Whihi—1 + bp;)

fr = o(Wiexe + bir + Wighi—1 + byf)

¢; = tanh(Wigx; + big + Wighi—1 + big)

o (Wiox; + bio + Whohi—1 + bino)
=01+ 0O

h; = o; © tanh(cy) (10)

Ot

As shown in Figure 6, MT-LSTM has a many-to-one type
structure that recognizes the driver status along the temporal
sequence of the driver’s facial behaviors over a recent time
period Tp. LSTM base is two stacked hidden layers, and
each hidden layer has an LSTM cell. Feedforwarding of the
stacked hidden layers repeats as many times as the length of
the input sequence. The fully-connected (FC) layer and three
binary classification layers follow the LSTM base. The binary
classification layer includes the FC layer and softmax.

LSTM Unit

:l IDistractionH Fatigue ||Drowsiness|
‘:’ Fully Connection (FC)
:l FC + Softmax :I : Input Data

Hidden Layer 2

e N I N N |

L 1 1 1
RIS L S S

T I Hidden Layer 1 T

| T,-T, I |T1—Tp+1| ’Tl—Tp+2‘ °°

.
[n-2 [[na J[ 5 ]

FIGURE 6. MT-LSTM Structure.

2) TRAINING MT-LSTM
Most research using both CNN and RNN models have used
a flattened output of the CNN base for the input to the
RNN model. Although different for each target application,
the length of the CNN base output is generally around a
thousand. Because RNN models consist of fully-connected
(FC) layers, parameters in the FC layer hugely increase and
decrease according to the input and output size of the FC
layer. Furthermore, LSTM uses more FC layers due to the
regulation gates. To reduce the number of parameters for
real-time operation in the restricted environment, it is essen-
tial to decrease the input and output sizes of the FC layers.
The number of parameters on the MT-LSTM model can
be calculated by Eq. (11). This depends on the length of the
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TABLE 6. Parameters on MT-LSTM.

Layer |Params input=3 input=1280 input=1280
hidden=43 hidden=43 hidden=2 x 43
W b W b W b
Hidden | Wiy, bip, | 768 | 256 | 327,680(256 | 655,360 | 512
Layer 1 | Wyp, bun | 16,384/ 256 16,384 (256 | 65,536 | 512
Hidden | W, bir, | 16,384/256 | 16,384 256 |65,536 |512
Layer 2 | Wy, by | 16,384/256 | 16,384 |256 |65,536 | 512
FC - 4,096 | 64 4,096 |64 16,384 | 128
CLS1 |- 128 |2 128 2 256 2
CLS2 |- 128 |2 128 2 256 2
CLS3 |- 128 |2 128 2 256 2
total B 55,494 382,406 871,302

LSTM cell input (N;) and the size of the hidden layer (Np).
Table 6 shows the comparison of parameters when the size
of the input and hidden increases. When using the output of
the CNN base instead of the driver’s facial behaviors vec-
tor, MT-LSTM needs as many parameters as the number of
parameters that decrease by using PydMobileNet. Increasing
the input and hidden sizes of the LSTM cell has the result that
the number of parameters in MT-LSTM is as many as half
parameters in the PydMobileNet base. The LSTM cell uses
the facial behaviors vector as an input to decrease the number
of parameters. In this paper, the number of classifications
(Cp), N;, and Nj, are three, three, and 46, respectively.

Win, bin) = {(Wir, bix) | k =i, f, g, 0}
(Whns bpn) = {(Whk, b)) | k =i, f , 8, 0}
Pwy, by =4 X Ni x N, +4 x N,
Py by = 4 X Np x Ny +4 x Ny, (11

3) GENERATING A TIME SERIES OF DRIVER's FACIAL
BEHAVIORS

Computing resources vary depending on the operating envi-
ronment of the system. For MobileNets, GPU-equipped
Desktops can run the model at over 30 frames per second
(FPS). On the other hand, SBCs equipped with only CPUs
barely handle one or two frames per second. The driver’s
status recognition is quite sensitive to the time factor. Not
considering the time domain, using sequential data result in a
fault result.

For example, the system is supposed to operate a system
with a model trained from 20FPS data on an SBC equipped
with only CPUs. If four consecutive eye closures are detected,
the system regards that the eyes were closed for two seconds
and should give a warning. From the viewpoint of the model
trained by 20FPS data, eyes are closed for 0.2 seconds. The
system will recognize the driver’s status as a general eye
blink. Therefore, the system needs to include a block gen-
erating time series data of driver’s behaviors for considering
the characteristic of the time domain.

Training the driver’s status recognition model to suit the
operating environment is an ideal method. But, training
the model regarding every situation is impossible. Even if
numerous models are trained, the deviation of the instance
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FIGURE 7. Generating Time-Series Dataset.

processing latency is significant even when operating the
system in the same environment. It is tricky to pick the proper
model for every recognition. Therefore, the DSR module gen-
erates a queue of time-series facial behaviors by considering
processing time.

Figure 7 describes the procedure for generating the queue
of time series facial behaviors. The BIG block generates a
batch image while the BIP block recognizes the driver’s sta-
tus. The size of the batch image depends on each processing
time of the BIP. The FBR module generates a facial behavior
batch of the same size as the batch image. The DBR module
dequeues data as much as the size of the facial behavior
batch received from the FBR module, and enqueues the facial
behavior batch. In this paper, the data has assigned labels of
driver status based on a sequence of data of ten seconds. The
acquisition rate of images is about 20FPS. Then, the size of
the queue is two hundred.

IV. EXPERIMENT RESULTS

A. ENVIRONMENT

The system contains Raspberry pi camera version 2 without
an IR filter. The camera is connected to an NVIDIA Jetson
Nano with Camera Serial interface (CSI). The captured image
has a resolution of 1280 x 720 pixels. An established infra-red
led light with an 850nm wavelength wave has an illumination
sensor and brightens the driver’s face at night. The camera
module is built into a self-made case and mounted on the
driver’s front dashboard, as shown in Figure 8.

This work conducted experiments in a vehicle and driving
simulator. The vehicle experiment is an experiment to collect
training and test data for the driver’s facial behavior recog-
nition model. To obtain images by considering the natural
light of various angles, the direction of head of the vehicle
was changed to be one of the four cardinal points (north,
south, east, and west) per day. For taking into account the
varying amounts of illumination, the vehicle experiment was
conducted during a clear day, cloudy day, and at night. Unlike
images taken during the cloudless day, these taken at night
do not have color information but have facial textures to
recognize the driver’s facial behavior.

In the driving simulator experiment, we collected a dataset
to train and test the model recognizing the driver’s status.
Unlike the vehicle experiments, the driving simulator is
indoors, and the infra-red led light not used. The map of the
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(a) Vehicle Environment

(b) Simulator Environment

FIGURE 8. Dataset Acquisition Environment.

TABLE 7. Participants.

Environments | Ages 20-29 | 30-39 [40-49 |50- Total
Vehicle Man 10 5 2 1 18
Vehicle Woman |2 5 8 7 22
Simulator Man 3 7 8 5 23
Simulator Woman |4 4 5 4 17
Total 19 21 23 17 80

driving simulator is a combination of a virtual highway and
an urban road modeled on Sangam, Korea. We instructed the
subjects to imitate the driver’s status according to the given
criteria while driving. Criteria of our previous research are
used. [19]

B. DATASETS

A total of eighty people from Ulsan, Korea were recruited
for participants. They had in the same ratios of age and
gender, as shown in Table 7. Thirty subjects participated
in the simulator experiment to acquire the dataset for the
driver status recognition module. Outdoor experiments for the
cloudless day, cloudy day, and at night have a proportion of
2: 1: 1. Thirty subjects participated in the vehicle experiment
to acquire the dataset for the facial behavior recognition mod-
ule, and the others participated in both experiments. The data
of ten subjects, who participated in only outdoor experiment,
comprise test dataset. The training and validation dataset
consists of the data of the rest of the subjects who participated
in each experiment.

The labels of datasets to train and test the driver facial
behavior model consist of five face orientations, two mouth
opening states, and two eye-closing categories. There are
twenty combinations of cases. For each subject, we sam-
pled 470 images for each case. The number of total training
images is 376,000, which are sampled from a total of about
865,000 images. The four-folds validation dataset for the
training and validation model consists of data form the forty
participants.
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The label of datasets to train and test the driver’s status
model consist of binary classifications, including distraction,
fatigue, and drowsiness. The combination of fatigue and
drowsiness has three labels because drowsiness occurs after
fatigue. Recognition of distractions is performed indepen-
dently of drowsiness and fatigue. The total number of images
acquired is about 412,000. The number of status data images
is 411,800 because the units defining driver status is two
hundred images. The number of four-fold validation dataset
for forty participants is about 3,312,000, and that of the test
dataset for ten is about 79,000.

C. EXPERIMENTS

For training and validating the Facial Behavior Recognition
model, we use datasets of forty people divided into four
groups of ten. Three groups are for training the model. The
remaining group is for validation. The process was repeated
to train and validate the model four times by changing the val-
idation set. Table 8 shows the average accuracy of the 4-fold
validation for three tasks that include Head Orientation(HO),
Mouth Opening(MO), and Eye Closing(EC). To measure the
performance, we use the Accuracy(A) of Eq. (12) that uses the
number(N,) of True Positive(7TP), False Negative(FN ), False
Positive(FP), and True Negative(TN) cases. The accuracy of
Eq. (12) is the ratio of the true results among the total datasets.

_ Nrp + Nin
Nrp + Nen + Npp + N1v
The training part uses the Adam Optimizer and different
learning rates depending on the model. Table 8 lists the
results of the epoch with the highest average Precision of
the three tasks out of a total of 30 epochs. InceptionNet
outperforms the other models for the training, and the differ-
ence between training and validation accuracy is the smallest.
Subsequently, ResNet and MobileNet showed high accuracy
in training and validation, respectively. Compared to training
accuracy, the average accuracy of MobileNet and PydMo-
bileNet on the validation decreases relatively less, but that of
the other models decreases significantly.

(12)

TABLE 8. Accuracy of Facial Behaviors Recognition Module for Training
and Validation Datasets.

CNN Training Accuracy Validation Accuracy

Models HO |MO [EC [Avg. |[HO |[MO |EC [Avg.
AlexNet 98.0 [99.9 |98.0 [98.6 |78.7 [96.8 |71.7 |82.4
InceptionNet |99.4 | 100 |99.9 [99.8 |839 (994 [952 [92.8
ResNet 99.2 1999 [99.8 |99.7 |82.8 [98.6 |92.1 |91.2

ShuffleNet 97.2 |199.8 |97.1 [98.0 |79.7 |96.4 |81.4 |858
SqueezeNet |92.1 |98.5 |81.8 |90.8 |77.5 |96.1 |72.6 |82.1
MobileNetV2 [ 97.3 [99.9 |99.3 [98.8 |88.3 [99.0 [94.4 |93.9
PydMobileNet| 98.9 [99.9 |99.8 [99.5 |87.3 [98.9 |93.7 |93.3

For testing the trained Facial Behavior Recognition mod-
ule, the datasets of ten people are used. To measure the per-
formance for testing datasets, the measures of Precision(P),
Recall(R), and F-score(F) are used. As shown in Eq. (13),
precision is the ratio of true positives among positive results
of recognition. Recall of Eq. (14) is the ratio of true positives
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TABLE 9. Precision, Recall, and F1-score of Facial Behaviors Recognition
Module for Test Dataset.

TABLE 10. Precision, Recall, and F1-score of Driver Status Recognition
Module for Test Dataset.

ShuffleNet 71.7163.8163.3]57.6|85.9|57.9|72.5|74.5|64.9| 67.3
SqueezeNet | 33.0|33.1(27.9|55.6|61.3|38.3|57.3|55.9|48.1|48.6
MobileNetV2 | 85.6] 97.8|90.6| 96.9| 99.7| 98.3| 87.2|95.8(90.7| 89.9
PydMobileNet| 84.5| 96.3]|89.3|97.6| 99.6| 98.6| 84.4|93.6| 88.0| 88.8

to the number of positives in the ground truth.The F-score of
Eq. (15) is the harmonic mean of Precision and Recall. This
paper uses the Fl-score with a 8 of one. Table 9 shows the
Precision, Recall, and F-score of three tasks run on the test
dataset. MobileNetV2 outperforms the other models across
three tasks, followed by PydMobileNet.

N
p—_ TP (13)
Nrp + Nrp
N
- (14)
Nrp + Npy
F=(4p)x LXK (15)
B B2 x P+R

The data of the 30 participants in the simulator experi-
ment is for training the driver’s state recognition model. The
data of 10 participants is for the testing models. To mea-
sure the performance of the driver’s distraction, fatigue, and
drowsiness recognition, we also use Precision, Recall, and
the F-score. As shown in Table 10, the Decision Tree model
shows the highest Precision in distraction recognition, which
is a relatively simple task. According to the average(avg.)
Precision of three tasks, LSTM outperforms other models in
three tasks.

For implementing the system, we use Scikit-learn for
the Decision Tree (DT), Random Forest (RF), and Sup-
port Vector Machine (SVM). For Training the Multi-Layer
Perceptron (MLP) and LSTM, we use PyTorch. The max-
imum depth of the Decision Tree and Random Forest
classifiers is five. We use an SVM with a linear kernel
(LinearSVM) for real-time use and trains LinearSVM with
C ={10,1, 0.1, 0.01, 0.001}. Considering the average preci-
sion for three tasks, we use 0.01 for C value. The used MLPs
have one (MLP1) and two (MLP2) hidden layers. The size
of the hidden layers is the same as that of LSTM. Training
MLPs and LSTMs iterate at 30 epoch. The training error is
saturated under the 25" epoch.

Table 11 lists the number of parameters and FLOPs of the
CNN bases and shows the FPS of the DSM system with-
out the BIG block. SqueezeNet has the smallest number of
parameters, and the FLOPs of ShuffleNet is lower than others.
The number of parameters and FLOPs of PydMobileNet are
relatively low compared to the others. Even though PydMo-
bileNet improves both compared to MobileNetV2, the FPS
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Head Mouth Eyes Total Algorithms | Distraction Fatigue Drowsiness Avg.
CNN Orientation(HO)| Opening(MO) | Closing(EC) Avg. or Models | P R F P R F P R F P
Models P [R [F [P [R [F [P [R [F [P DT 99.9199.9(99.9193.7[90.2(91.6(99.399.4[99.3|97.6
AlexNet 73.0162.7159.4]170.4|86.3| 71.7| 78.4|61.7| 61.3| 73.9 RF 97.9(99.798.8195.792.4|93.8|97.8[99.6 |98.6 |97.1
InceptionNet |85.2]90.4|86.4|85.2|91.7|87.6/90.9| 89.5|90.0| 87.1 LinearSVM| 87.8 | 88.4 | 88.1 | 97.5]95.4|96.3|92.9|89.8|91.3|92.7
ResNet 87.4|63.4/69.1]85.6/92.9| 87.3|86.4|79.6|81.9| 86.5 MLP 86.1|87.0|86.5/96.9|96.9|96.9|88.7 | 88.8 | 88.7|90.5

MLP2 88.2189.2|88.7/97.4|95.0|96.1|92.6|89.5|90.9|92.7
LSTM 99.7199.9]99.8(99.8199.899.8|99.5|99.8|99.7|99.7

TABLE 11. FLOPs and Parameters of CNN base and FLOPs of the
Traditional DSM system according to CNN base.

CNN base Parameters FLOPs FPS
AlexNet 61.100M 821.109M 13.210
InceptionNet 27.161M 5,771.588M 6.851
ResNet 25.557TM 4,136.628M 8.744
ShuffleNet 2.279M 151.972M 9.539
SqueezeNet 1.235M 747.099M 12.514
MobileNet 2.235M 313.479M 10.155
PydMobileNet | 1.86M 195.440M 8.336

of PydMobileNet is lower than MobileNetV2 because it uses
parallel DWconvs with different-size kernels.

As shown in Table 12, the processed Batch-Images per sec-
ond (BPS) of the ABI-DSM system decreases compared to
FPS of Table 11, and the BPS of InceptionNet and ResNet
base significantly decline. The BPS of PydMobileNet is
also lower than that of MobileNetV2 on the ABI-DSM sys-
tem. Through the ABI-DSM system, PydMobileNet can pro-
cess three images batch simultaneously. Then, the processed
FPS (PFPS) of the ABI-DSM system based on PydMo-
bileNet is similar to MobileNetV2. The average Precision of
the ABI-DSM system based on PydMobileNet is similar to
MobileNetV2, as shown in Table 13.

TABLE 12. BPS and PFPS of the ABI-DSM system.

CNN base BPS Avg. Batch Size PFPS

AlexNet 10.203 2.08 21.234
InceptionNet 2.1252 8 17.002
ResNet 1.6959 8 13.567
ShuffleNet 9.8890 2.14 21.196
SqueezeNet 10.091 2.09 21.177
MobileNet 10.356 2.05 21.243
PydMobileNet | 7.090 2.99 21.186

As shown in Table 12, the BPS of the ABI-DSM system
based on InceptionNet and ResNet with the high FLOPs
decrease significantly compared to Table 11. The average
size of the Batch-Image is more than eight. This results in
frame loss because the ABI-DSM system restricts the maxi-
mum size of the Batch-Image to eight to prevent an extreme
increase in the processing time. The overall processing time
of the ABI-DSM system based on the other models increases,
but the PFPS of the system is above 20 FPS. This shows that
the system can use all of the captured images at about 20
FPS for recognizing the driver’s status due to the use of the
Batch-Image.
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TABLE 13. Precision, Recall, and F1-score of the ABI-DSM system for Test
Dataset.

Distraction Fatigue Drowsiness Total
CNN Avg.
Models P R F P R F P R F P
AlexNet 78.3]82.8179.2169.1|62.1|160.9|79.3|74.2|73.4|75.5
InceptionNet | 96.0|91.9]93.8]|90.6|90.1|90.2| 94.4| 87.8| 90.6| 93.6
ResNet 95.1175.9|81.2|83.9|79.6| 80.5|91.0|79.2| 83.1| 89.9

ShuffleNet 86.5]75.3]78.1|68.7|67.5/62.9|72.5|77.0|65.5|75.9
SqueezeNet | 71.0|59.8(57.3|54.7|53.1|42.1|60.2|56.9|48.0| 62.0
MobileNetV2 | 91.1]96.1]93.3|89.7|92.7| 90.6| 93.2|97.6(95.2| 91.3
PydMobileNet| 95.4| 95.0|95.1| 87.5|89.3|87.6/91.0|94.2| 92.4| 91.3

22

—-—- MobileNet
—— PydMobileNet

214

20

19 1 N

PFPS

18 .~

17 A T s

16 T T
4 5 6 7

The Size of Batch-Image

FIGURE 9. The PFPS according to the Size of Batch-Image.

Although the ABI-DSM system based on InceptionNet
has the highest average Precision for three tasks, as shown
in Table 13, it can not operate in real-time. The Precision of
the systems based on AlexNet, ShuffleNet, and SqueezeNet
among models capable of real-time operation is lower than
the average of 80 percent. Systems based on MobileNet and
PydMobileNet are relatively stable in terms of both Precision
and FPS. The ABI-DSM system based on PydMobileNet
has lower PFPS than that of a MobileNetV2 based system.
However, for a Batch-Image size greater than six, the PydMo-
bileNet based system is faster than the MobileNetV2 based
system, as shown in Figure 9, which shows PFPS when using
a fixed-size Batch-Image.

V. CONCLUSION

This paper proposed the Adaptive Batch-Image based Driver
Status Monitoring (ABI-DSM) system for real-time opera-
tion on light-weight SBC with GPU. Designs of ABI-DSM
focus on reducing parameters of Deep Learning models in
the system to process the batch images in real-time, with
the following approach. By using facial behavior informa-
tion, the number of parameters of LSTM, which recog-
nize the driver’s status from time-series data, decreases.
Also, the facial behavior recognition model is simplified
by not detecting and tracking faces in the image. This
system uses PydMobileNet, which is an advanced version
of MobileNetV2. Parameters of the ABI-DSM based on
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PydMobileNet is about 73% of the DSM system with the
sequence of MobileNetV2 and LSTM.

In the experiment results, the ABI-DSM system based
on InceptionNet outperforms others in terms of Precision.
However, the size of Batch-Image continuously increases
without batch size limitation, then the system eventually
terminated. It is a challenge to operate the InceptionNet based
ABI-DSM system on light-weight SBC with GPU in real-
time. The ABI-DSM systems based on MobileNetV2 and
PydMobileNet show reliable FPS and Precision. Among
them, MobileNetV2 is more suitable for real-time use on the
Jetson Nano.

In cases, which the ABI-DSM system can not occupy
100% GPUs due to the other programs on the same SBC,
PydMobileNet is more efficient due to the increase of
Batch-Image size.

Although this work considers commercialization, there
still are practical issues according to requirements in the
industry, such as improving accuracy and reducing the
commercializing cost. The vision-based system has lim-
itations in inferring the driver’s intentions. The driver’s
intention is one of the main factors to recognize the sta-
tus of the driver in the real-world. Many researchers rec-
ommend considering traffic context, vehicle dynamics, and
driver behaviors together for providing a robust driver assis-
tant system [3], [45]. In the future, the ABI-DSM system
will be improved by fusing vehicular, physiological, and
vision sensors. Meanwhile, the ABI-DSM system will be
implemented and evaluated on cheaper light-weight SBCs,
such as the Raspberry Pi 4 and Jetson Nano board with
2GB memory.
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