
Pyramid Scene Parsing Network

Hengshuang Zhao1 Jianping Shi2 Xiaojuan Qi1 Xiaogang Wang1 Jiaya Jia1

1The Chinese University of Hong Kong 2SenseTime Group Limited

{hszhao, xjqi, leojia}@cse.cuhk.edu.hk, xgwang@ee.cuhk.edu.hk, shijianping@sensetime.com

Abstract

Scene parsing is challenging for unrestricted open vo-

cabulary and diverse scenes. In this paper, we exploit the

capability of global context information by different-region-

based context aggregation through our pyramid pooling

module together with the proposed pyramid scene parsing

network (PSPNet). Our global prior representation is ef-

fective to produce good quality results on the scene parsing

task, while PSPNet provides a superior framework for pixel-

level prediction. The proposed approach achieves state-of-

the-art performance on various datasets. It came first in Im-

ageNet scene parsing challenge 2016, PASCAL VOC 2012

benchmark and Cityscapes benchmark. A single PSPNet

yields the new record of mIoU accuracy 85.4% on PASCAL

VOC 2012 and accuracy 80.2% on Cityscapes.

1. Introduction

Scene parsing, based on semantic segmentation, is a fun-

damental topic in computer vision. The goal is to assign

each pixel in the image a category label. Scene parsing pro-

vides complete understanding of the scene. It predicts the

label, location, as well as shape for each element. This topic

is of broad interest for potential applications of automatic

driving, robot sensing, to name a few.

Difficulty of scene parsing is closely related to scene and

label variety. The pioneer scene parsing task [23] is to clas-

sify 33 scenes for 2,688 images on LMO dataset [22]. More

recent PASCAL VOC semantic segmentation and PASCAL

context datasets [8, 29] include more labels with similar

context, such as chair and sofa, horse and cow, etc. The

new ADE20K dataset [43] is the most challenging one with

a large and unrestricted open vocabulary and more scene

classes. A few representative images are shown in Fig. 1.

To develop an effective algorithm for these datasets needs

to conquer a few difficulties.

State-of-the-art scene parsing frameworks are mostly

based on the fully convolutional network (FCN) [26]. The

deep convolutional neural network (CNN) based methods

boost dynamic object understanding, and yet still face chal-

Figure 1. Illustration of complex scenes in ADE20K dataset.

lenges considering diverse scenes and unrestricted vocabu-

lary. One example is shown in the first row of Fig. 2, where

a boat is mistaken as a car. These errors are due to similar

appearance of objects. But when viewing the image regard-

ing the context prior that the scene is described as boathouse

near a river, correct prediction should be yielded.

Towards accurate scene perception, the knowledge graph

relies on prior information of scene context. We found

that the major issue for current FCN based models is lack

of suitable strategy to utilize global scene category clues.

For typical complex scene understanding, previously to get

a global image-level feature, spatial pyramid pooling [18]

was widely employed where spatial statistics provide a good

descriptor for overall scene interpretation. Spatial pyramid

pooling network [12] further enhances the ability.

Different from these methods, to incorporate suitable

global features, we propose pyramid scene parsing network

(PSPNet). In addition to traditional dilated FCN [3, 40] for

pixel prediction, we extend the pixel-level feature to the

specially designed global pyramid pooling one. The local

and global clues together make the final prediction more

reliable. We also propose an optimization strategy with
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deeply supervised loss. We give all implementation details,

which are key to our decent performance in this paper, and

make the code and trained models publicly available 1.

Our approach achieves state-of-the-art performance on

all available datasets. It is the champion of ImageNet scene

parsing challenge 2016 [43], and arrived the 1st place on

PASCAL VOC 2012 semantic segmentation benchmark [8],

and the 1st place on urban scene Cityscapes data [6]. They

manifest that PSPNet gives a promising direction for pixel-

level prediction tasks, which may even benefit CNN-based

stereo matching, optical flow, depth estimation, etc. in

follow-up work. Our main contributions are threefold.

• We propose a pyramid scene parsing network to em-

bed difficult scenery context features in an FCN based

pixel prediction framework.

• We develop an effective optimization strategy for deep

ResNet [13] based on deeply supervised loss.

• We build a practical system for state-of-the-art scene

parsing and semantic segmentation where all crucial

implementation details are included.

2. Related Work

In the following, we review recent advances in scene

parsing and semantic segmentation tasks. Driven by pow-

erful deep neural networks [17, 33, 34, 13], pixel-level

prediction tasks like scene parsing and semantic segmen-

tation achieve great progress inspired by replacing the

fully-connected layer in classification with the convolution

layer [26]. To enlarge the receptive field of neural networks,

methods of [3, 40] used dilated convolution. Noh et al. [30]

proposed a coarse-to-fine structure with deconvolution net-

work to learn the segmentation mask. Our baseline network

is FCN and dilated network [26, 3].

Other work mainly proceeds in two directions. One

line [26, 3, 5, 39, 11] is with multi-scale feature ensembling.

Since in deep networks, higher-layer feature contains more

semantic meaning and less location information. Combin-

ing multi-scale features can improve the performance.

The other direction is based on structure prediction. The

pioneer work [3] used conditional random field (CRF) as

post processing to refine the segmentation result. Following

methods [25, 41, 1] refined networks via end-to-end model-

ing. Both of the two directions ameliorate the localization

ability of scene parsing where predicted semantic boundary

fits objects. Yet there is still much room to exploit necessary

information in complex scenes.

To make good use of global image-level priors for di-

verse scene understanding, methods of [18, 27] extracted

global context information with traditional features not

from deep neural networks. Similar improvement was made

1https://github.com/hszhao/PSPNet

under object detection frameworks [35]. Liu et al. [24]

proved that global average pooling with FCN can improve

semantic segmentation results. However, our experiments

show that these global descriptors are not representative

enough for the challenging ADE20K data. Therefore, dif-

ferent from global pooling in [24], we exploit the capabil-

ity of global context information by different-region-based

context aggregation via our pyramid scene parsing network.

3. Pyramid Scene Parsing Network

We start with our observation and analysis of represen-

tative failure cases when applying FCN methods to scene

parsing. They motivate proposal of our pyramid pooling

module as the effective global context prior. Our pyramid

scene parsing network (PSPNet) illustrated in Fig. 3 is then

described to improve performance for open-vocabulary ob-

ject and stuff identification in complex scene parsing.

3.1. Important Observations

The new ADE20K dataset [43] contains 150 stuff/object

category labels (e.g., wall, sky, and tree) and 1,038 image-

level scene descriptors (e.g., airport terminal, bedroom, and

street). So a large amount of labels and vast distributions

of scenes come into existence. Inspecting the prediction

results of the FCN baseline provided in [43], we summarize

several common issues for complex-scene parsing.

Mismatched Relationship Context relationship is uni-

versal and important especially for complex scene under-

standing. There exist co-occurrent visual patterns. For ex-

ample, an airplane is likely to be in runway or fly in sky

while not over a road. For the first-row example in Fig. 2,

FCN predicts the boat in the yellow box as a “car” based on

its appearance. But the common knowledge is that a car is

seldom over a river. Lack of the ability to collect contextual

information increases the chance of misclassification.

Confusion Categories There are many class label pairs

in the ADE20K dataset [43] that are confusing in classifi-

cation. Examples are field and earth; mountain and hill;

wall, house, building and skyscraper. They are with simi-

lar appearance. The expert annotator who labeled the entire

dataset, still makes 17.60% pixel error as described in [43].

In the second row of Fig. 2, FCN predicts the object in the

box as part of skyscraper and part of building. These re-

sults should be excluded so that the whole object is either

skyscraper or building, but not both. This problem can be

remedied by utilizing the relationship between categories.

Inconspicuous Classes Scene contains objects/stuff of

arbitrary size. Several small-size things, like streetlight and

signboard, are hard to find while they may be of great im-

portance. Contrarily, big objects or stuff may exceed the
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Figure 2. Scene parsing issues we observe on ADE20K [43] dataset. The first row shows the issue of mismatched relationship – cars are

seldom over water than boats. The second row shows confusion categories where class “building” is easily confused as “skyscraper”. The

third row illustrates inconspicuous classes. In this example, the pillow is very similar to the bed sheet in terms of color and texture. These

inconspicuous objects are easily misclassified by FCN.

receptive field of FCN and thus cause discontinuous pre-

diction. As shown in the third row of Fig. 2, the pillow

has similar appearance with the sheet. Overlooking the

global scene category may fail to parse the pillow. To im-

prove performance for remarkably small or large objects,

one should pay much attention to different sub-regions that

contain inconspicuous-category stuff.

To summarize these observations, many errors are par-

tially or completely related to contextual relationship and

global information for different receptive fields. Thus a

deep network with a suitable global-scene-level prior can

much improve the performance of scene parsing.

3.2. Pyramid Pooling Module

With above analysis, in what follows, we introduce the

pyramid pooling module, which empirically proves to be an

effective global contextual prior.

In a deep neural network, the size of receptive field can

roughly indicates how much we use context information.

Although theoretically the receptive field of ResNet [13] is

already larger than the input image, it is shown by Zhou et

al. [42] that the empirical receptive field of CNN is much

smaller than the theoretical one especially on high-level lay-

ers. This makes many networks not sufficiently incorporate

the momentous global scenery prior. We address this issue

by proposing an effective global prior representation.

Global average pooling is a good baseline model as the

global contextual prior, which is commonly used in image

classification tasks [34, 13]. In [24], it was successfully ap-

plied to semantic segmentation. But regarding the complex-

scene images in ADE20K [43], this strategy is not enough to

cover necessary information. Pixels in these scene images

are annotated regarding many stuff and objects. Directly

fusing them to form a single vector may lose the spatial rela-

tion and cause ambiguity. Global context information along

with sub-region context is helpful in this regard to distin-

guish among various categories. A more powerful represen-

tation could be fused information from different sub-regions

with these receptive fields. Similar conclusion was drawn in

classical work [18, 12] of scene/image classification.

In [12], feature maps in different levels generated by

pyramid pooling were finally flattened and concatenated to

be fed into a fully connected layer for classification. This

global prior is designed to remove the fixed-size constraint

of CNN for image classification. To further reduce context

information loss between different sub-regions, we propose

a hierarchical global prior, containing information with dif-

ferent scales and varying among different sub-regions. We
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Figure 3. Overview of our proposed PSPNet. Given an input image (a), we first use CNN to get the feature map of the last convolutional

layer (b), then a pyramid parsing module is applied to harvest different sub-region representations, followed by upsampling and concatena-

tion layers to form the final feature representation, which carries both local and global context information in (c). Finally, the representation

is fed into a convolution layer to get the final per-pixel prediction (d).

call it pyramid pooling module for global scene prior con-

struction upon the final-layer-feature-map of the deep neu-

ral network, as illustrated in part (c) of Fig. 3.

The pyramid pooling module fuses features under four

different pyramid scales. The coarsest level highlighted in

red is global pooling to generate a single bin output. The

following pyramid level separates the feature map into dif-

ferent sub-regions and forms pooled representation for dif-

ferent locations. The output of different levels in the pyra-

mid pooling module contains the feature map with varied

sizes. To maintain the weight of global feature, we use 1×1
convolution layer after each pyramid level to reduce the di-

mension of context representation to 1/N of the original

one if the level size of pyramid is N . Then we directly up-

sample the low-dimension feature maps to get the same size

feature as the original feature map via bilinear interpolation.

Finally, different levels of features are concatenated as the

final pyramid pooling global feature.

Noted that the number of pyramid levels and size of each

level can be modified. They are related to the size of feature

map that is fed into the pyramid pooling layer. The struc-

ture abstracts different sub-regions by adopting varying-size

pooling kernels in a few strides. Thus the multi-stage ker-

nels should maintain a reasonable gap in representation.

Our pyramid pooling module is a four-level one with bin

sizes of 1×1, 2×2, 3×3 and 6×6 respectively. For the type

of pooling operation between max and average, we perform

extensive experiments to show the difference in Section 5.2.

3.3. Network Architecture

With the pyramid pooling module, we propose our pyra-

mid scene parsing network (PSPNet) as illustrated in Fig. 3.

Given an input image in Fig. 3(a), we use a pretrained

ResNet [13] model with the dilated network strategy [3, 40]

to extract the feature map. The final feature map size is 1/8
of the input image, as shown in Fig. 3(b). On top of the

Figure 4. Illustration of auxiliary loss in ResNet101. Each blue

box denotes a residue block. The auxiliary loss is added after the

res4b22 residue block.

map, we use the pyramid pooling module shown in (c) to

gather context information. Using our 4-level pyramid, the

pooling kernels cover the whole, half of, and small portions

of the image. They are fused as the global prior. Then we

concatenate the prior with the original feature map in the

final part of (c). It is followed by a convolution layer to

generate the final prediction map in (d).

To explain our structure, PSPNet provides an effective

global contextual prior for pixel-level scene parsing. The

pyramid pooling module can collect levels of information,

more representative than global pooling [24]. In terms of

computational cost, our PSPNet does not much increase it

compared to the original dilated FCN network. In end-to-

end learning, the global pyramid pooling module and the

local FCN feature can be optimized simultaneously.

4. Deep Supervision for ResNet-Based FCN

Deep pretrained networks lead to good performance

[17, 33, 13]. However, increasing depth of the network

may introduce additional optimization difficulty as shown

in [32, 19] for image classification. ResNet solves this prob-

lem with skip connection in each block. Latter layers of

deep ResNet mainly learn residues based on previous ones.
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We contrarily propose generating initial results by super-

vision with an additional loss, and learning the residue af-

terwards with the final loss. Thus, optimization of the deep

network is decomposed into two, each is simpler to solve.

An example of our deeply supervised ResNet101 [13]

model is illustrated in Fig. 4. Apart from the main branch

using softmax loss to train the final classifier, another clas-

sifier is applied after the fourth stage, i.e., the res4b22

residue block. Different from relay backpropagation [32]

that blocks the backward auxiliary loss to several shallow

layers, we let the two loss functions pass through all pre-

vious layers. The auxiliary loss helps optimize the learning

process, while the master branch loss takes the most respon-

sibility. We add weight to balance the auxiliary loss.

In the testing phase, we abandon this auxiliary branch

and only use the well optimized master branch for final pre-

diction. This kind of deeply supervised training strategy

for ResNet-based FCN is broadly useful under different ex-

perimental settings and works with the pre-trained ResNet

model. This manifests the generality of such a learning

strategy. More details are provided in Section 5.2.

5. Experiments

Our proposed method is successful on scene parsing

and semantic segmentation challenges. We evaluate it in

this section on three different datasets, including ImageNet

scene parsing challenge 2016 [43], PASCAL VOC 2012

semantic segmentation [8] and urban scene understanding

dataset Cityscapes [6].

5.1. Implementation Details

For a practical deep learning system, devil is always in

the details. Our implementation is based on the public plat-

form Caffe [15]. Inspired by [4], we use the “poly” learning

rate policy where current learning rate equals to the base one

multiplying (1 − iter
maxiter

)power. We set base learning rate

to 0.01 and power to 0.9. The performance can be improved

by increasing the iteration number, which is set to 150K for

ImageNet experiment, 30K for PASCAL VOC and 90K for

Cityscapes. Momentum and weight decay are set to 0.9 and

0.0001 respectively. For data augmentation, we adopt ran-

dom mirror and random resize between 0.5 and 2 for all

datasets, and additionally add random rotation between -

10 and 10 degrees, and random Gaussian blur for ImageNet

and PASCAL VOC. This comprehensive data augmentation

scheme makes the network resist overfitting. Our network

contains dilated convolution following [4].

During the course of experiments, we notice that an ap-

propriately large “cropsize” can yield good performance

and “batchsize” in the batch normalization [14] layer is

of great importance. Due to limited physical memory on

GPU cards, we set the “batchsize” to 16 during training.

To achieve this, we modify Caffe from [37] together with

Method Mean IoU(%) Pixel Acc.(%)

ResNet50-Baseline 37.23 78.01

ResNet50+B1+MAX 39.94 79.46

ResNet50+B1+AVE 40.07 79.52

ResNet50+B1236+MAX 40.18 79.45

ResNet50+B1236+AVE 41.07 79.97

ResNet50+B1236+MAX+DR 40.87 79.61

ResNet50+B1236+AVE+DR 41.68 80.04

Table 1. Investigation of PSPNet with different settings. Baseline

is ResNet50-based FCN with dilated network. ‘B1’ and ‘B1236’

denote pooled feature maps of bin sizes {1 × 1} and {1 × 1, 2 ×
2, 3 × 3, 6 × 6} respectively. ‘MAX’ and ‘AVE’ represent max

pooling and average pooling operations individually. ‘DR’ means

that dimension reduction is taken after pooling. The results are

tested on the validation set with the single-scale input.

branch [4] and make it support batch normalization on data

gathered from multiple GPUs based on OpenMPI. For the

auxiliary loss, we set the weight to 0.4 in experiments.

5.2. ImageNet Scene Parsing Challenge 2016

Dataset and Evaluation Metrics The ADE20K dataset

[43] is used in ImageNet scene parsing challenge 2016. Dif-

ferent from other datasets, ADE20K is more challenging

for the up to 150 classes and diverse scenes with a total

of 1,038 image-level labels. The challenge data is divided

into 20K/2K/3K images for training, validation and testing.

Also, it needs to parse both objects and stuff in the scene,

which makes it more difficult than other datasets. For eval-

uation, both pixel-wise accuracy (Pixel Acc.) and mean of

class-wise intersection over union (Mean IoU) are used.

Ablation Study for PSPNet To evaluate PSPNet, we con-

duct experiments with several settings, including pooling

types of max and average, pooling with just one global fea-

ture or four-level features, with and without dimension re-

duction after the pooling operation and before concatena-

tion. As listed in Table 1, average pooling works better than

max pooling in all settings. Pooling with pyramid parsing

outperforms that using global pooling. With dimension re-

duction, the performance is further enhanced. With our pro-

posed PSPNet, the best setting yields results 41.68/80.04 in

terms of Mean IoU and Pixel Acc. (%), exceeding global

average pooling of 40.07/79.52 as idea in Liu et al. [24] by

1.61/0.52. And compared to the baseline, PSPNet outper-

forming it by 4.45/2.03 in terms of absolute improvement

and 11.95/2.60 in terms of relative difference.

Ablation Study for Auxiliary Loss The introduced aux-

iliary loss helps optimize the learning process while not in-

fluencing learning in the master branch. We experiment

with setting the auxiliary loss weight α between 0 and 1 and

show the results in Table 2. The baseline uses ResNet50-

based FCN with dilated network, with the master branch’s

softmax loss for optimization. Adding the auxiliary loss
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Loss Weight α Mean IoU(%) Pixel Acc.(%)

ResNet50 (without AL) 35.82 77.07

ResNet50 (with α = 0.3) 37.01 77.87

ResNet50 (with α = 0.4) 37.23 78.01

ResNet50 (with α = 0.6) 37.09 77.84

ResNet50 (with α = 0.9) 36.99 77.87

Table 2. Setting an appropriate loss weight α in the auxiliary

branch is important. ‘AL’ denotes the auxiliary loss. Baseline is

ResNet50-based FCN with dilated network. Empirically, α = 0.4

yields the best performance. The results are tested on the valida-

tion set with the single-scale input.

Figure 5. Performance grows with deeper networks. The results

are obtained on the validation set with the single-scale input.

Method Mean IoU(%) Pixel Acc.(%)

PSPNet(50) 41.68 80.04

PSPNet(101) 41.96 80.64

PSPNet(152) 42.62 80.80

PSPNet(269) 43.81 80.88

PSPNet(50)+MS 42.78 80.76

PSPNet(101)+MS 43.29 81.39

PSPNet(152)+MS 43.51 81.38

PSPNet(269)+MS 44.94 81.69

Table 3. Deeper pre-trained model get higher performance. Num-

ber in the brackets refers to the depth of ResNet and ‘MS’ denotes

multi-scale testing.

branch, α = 0.4 yields the best performance. It outperforms

the baseline with an improvement of 1.41/0.94 in terms of

Mean IoU and Pixel Acc. (%). We believe deeper networks

will benefit more given the new augmented auxiliary loss.

Ablation Study for Pre-trained Model Deeper neural

networks have been shown in previous work to be beneficial

to large scale data classification. To further analyze PSPNet,

we conduct experiments for different depths of pre-trained

ResNet. We test four depths of {50, 101, 152, 269}. As

shown in Fig. 5, with the same setting, increasing the depth

of ResNet from 50 to 269 can improve the score of (Mean

IoU + Pixel Acc.) / 2 (%) from 60.86 to 62.35, with 1.49 ab-

solute improvement. Detailed scores of PSPNet pre-trained

from different depth ResNet models are listed in Table 3.

Method Mean IoU(%) Pixel Acc.(%)

FCN [26] 29.39 71.32

SegNet [2] 21.64 71.00

DilatedNet [40] 32.31 73.55

CascadeNet [43] 34.90 74.52

ResNet50-Baseline 34.28 76.35

ResNet50+DA 35.82 77.07

ResNet50+DA+AL 37.23 78.01

ResNet50+DA+AL+PSP 41.68 80.04

ResNet269+DA+AL+PSP 43.81 80.88

ResNet269+DA+AL+PSP+MS 44.94 81.69

Table 4. Detailed analysis of our proposed PSPNet with compar-

ison with others. Our results are obtained on the validation set

with the single-scale input except for the last row. Results of FCN,

SegNet and DilatedNet are reported in [43]. ‘DA’ refers to data

augmentation we performed, ‘AL’ denotes the auxiliary loss we

added and ‘PSP’ represents the proposed PSPNet. ‘MS’ means

that multi-scale testing is used.

Rank Team Name Final Score (%)

1 Ours 57.21

2 Adelaide 56.74

3 360+MCG-ICT-CAS SP 55.56

- (our single model) (55.38)

4 SegModel 54.65

5 CASIA IVA 54.33

- DilatedNet [40] 45.67

- FCN [26] 44.80

- SegNet [2] 40.79

Table 5. Results of ImageNet scene parsing challenge 2016. The

best entry of each team is listed. The final score is the mean of

Mean IoU and Pixel Acc. Results are evaluated on the testing set.

More Detailed Performance Analysis We show our

more detailed analysis on the validation set of ADE20K in

Table 4. All our results except the last-row one use single-

scale test. “ResNet269+DA+AL+PSP+MS” uses multi-

scale testing. Our baseline is adapted from ResNet50 with

dilated network, which yields MeanIoU 34.28 and Pixel

Acc. 76.35. It already outperforms other prior systems pos-

sibly due to the powerful ResNet [13].

Our proposed architecture makes further improvement

compared to the baseline. Using data augmentation,

our result exceeds the baseline by 1.54/0.72 and reaches

35.82/77.07. Using the auxiliary loss can further improve

it by 1.41/0.94 and reaches 37.23/78.01. With PSPNet, we

notice relatively more significant progress for improvement

of 4.45/2.03. The result reaches 41.68/80.04. The differ-

ence from the baseline result is 7.40/3.69 in terms of abso-

lute improvement and 21.59/4.83 (%) in terms of relativity.

A deeper network of ResNet269 yields even higher perfor-

mance up to 43.81/80.88. Finally, the multi-scale testing

scheme moves the scores to 44.94/81.69.

Results in Challenge Using the proposed architecture,

our team came in the 1st place in ImageNet scene parsing
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Figure 6. Visual improvements on ADE20K, PSPNet produces

more accurate and detailed results.

challenge 2016. Table 5 shows a few results in this com-

petition. Our ensemble submission achieves score 57.21%

on the testing set. Our single-model yields score 55.38%,

which is even higher than a few other multi-model ensem-

ble submissions. This score is lower than that on the valida-

tion set possibly due to the difference of data distributions

between validation and testing sets. As shown in column

(d) of Fig. 2, PSPNet solves the common problems in FCN.

Fig. 6 shows another few parsing results on validation set of

ADE20K. Our results contain more accurate and detailed

structures compared to the baseline.

5.3. PASCAL VOC 2012

Our PSPNet also works satisfyingly on semantic seg-

mentation. We carry out experiments on the PASCAL VOC

2012 segmentation dataset [8], which contains 20 object

categories and one background class. Following the proce-

dure of [26, 7, 31, 3], we use augmented data with the anno-

tation of [10] resulting 10,582, 1,449 and 1,456 images for

training, validation and testing. Results are shown in Ta-

ble 6, we compare PSPNet with previous best-performing

methods on the testing set based on two settings, i.e., with

or without pre-training on MS-COCO dataset [21]. Meth-

ods pre-trained with MS-COCO are marked by ‘†’. For fair

comparison with current ResNet based frameworks [38, 9,

4] in scene parsing/semantic segmentation task, we build

our architecture based on ResNet101 while without post-

processing like CRF. We evaluate PSPNet with several-

scale input and use the average results following [3, 24].

Figure 7. Visual improvements on PASCAL VOC 2012 data. PSP-

Net produces more accurate and detailed results.

As shown in Table 6, PSPNet outperforms prior meth-

ods on both settings. Trained with only VOC 2012 data, we

achieve 82.6% accuracy2 – we get the highest accuracy on

all 20 classes. When PSPNet is pre-trained with MS-COCO

dataset, it reaches 85.4% accuracy3 where 19 out of the 20

classes receive the highest accuracy. Intriguingly, our PSP-

Net trained with only VOC 2012 data outperforms existing

methods trained with the MS-COCO pre-trained model.

One may argue that our based classification model is

more powerful than several prior methods since ResNet

was recently proposed. To exhibit our unique contribu-

tion, we show that our method also outperforms state-

of-the-art frameworks that use the same model, including

FCRNs [38], LRR [9], and DeepLab [4]. In this process,

we even do not employ time-consuming but effective post-

processing, such as CRF, as that in [4, 9].

Several examples are shown in Fig. 7. For “cows” in row

one, our baseline model treats it as “horse” and “dog” while

PSPNet corrects these errors. For “aeroplane” and “table”

in the second and third rows, PSPNet finds missing parts.

For “person”, “bottle” and “plant” in following rows, PSP-

Net performs well on these small-size-object classes in the

images compared to the baseline model. More visual com-

parisons between PSPNet and other methods are included

in our project website.

5.4. Cityscapes

Cityscapes [6] is a recently released dataset for semantic

urban scene understanding. It contains 5,000 high quality

pixel-level finely annotated images collected from 50 cities

2http://host.robots.ox.ac.uk:8080/anonymous/0OOWLP.html
3http://host.robots.ox.ac.uk:8080/anonymous/6KIR41.html
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

FCN [26] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

Zoom-out [28] 85.6 37.3 83.2 62.5 66.0 85.1 80.7 84.9 27.2 73.2 57.5 78.1 79.2 81.1 77.1 53.6 74.0 49.2 71.7 63.3 69.6

DeepLab [3] 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

CRF-RNN [41] 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0

DeconvNet [30] 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5

GCRF [36] 85.2 43.9 83.3 65.2 68.3 89.0 82.7 85.3 31.1 79.5 63.3 80.5 79.3 85.5 81.0 60.5 85.5 52.0 77.3 65.1 73.2

DPN [25] 87.7 59.4 78.4 64.9 70.3 89.3 83.5 86.1 31.7 79.9 62.6 81.9 80.0 83.5 82.3 60.5 83.2 53.4 77.9 65.0 74.1

Piecewise [20] 90.6 37.6 80.0 67.8 74.4 92.0 85.2 86.2 39.1 81.2 58.9 83.8 83.9 84.3 84.8 62.1 83.2 58.2 80.8 72.3 75.3

PSPNet 91.8 71.9 94.7 71.2 75.8 95.2 89.9 95.9 39.3 90.7 71.7 90.5 94.5 88.8 89.6 72.8 89.6 64.0 85.1 76.3 82.6

CRF-RNN† [41] 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1 74.7

BoxSup† [7] 89.8 38.0 89.2 68.9 68.0 89.6 83.0 87.7 34.4 83.6 67.1 81.5 83.7 85.2 83.5 58.6 84.9 55.8 81.2 70.7 75.2

Dilation8† [40] 91.7 39.6 87.8 63.1 71.8 89.7 82.9 89.8 37.2 84.0 63.0 83.3 89.0 83.8 85.1 56.8 87.6 56.0 80.2 64.7 75.3

DPN† [25] 89.0 61.6 87.7 66.8 74.7 91.2 84.3 87.6 36.5 86.3 66.1 84.4 87.8 85.6 85.4 63.6 87.3 61.3 79.4 66.4 77.5

Piecewise† [20] 94.1 40.7 84.1 67.8 75.9 93.4 84.3 88.4 42.5 86.4 64.7 85.4 89.0 85.8 86.0 67.5 90.2 63.8 80.9 73.0 78.0

FCRNs† [38] 91.9 48.1 93.4 69.3 75.5 94.2 87.5 92.8 36.7 86.9 65.2 89.1 90.2 86.5 87.2 64.6 90.1 59.7 85.5 72.7 79.1

LRR† [9] 92.4 45.1 94.6 65.2 75.8 95.1 89.1 92.3 39.0 85.7 70.4 88.6 89.4 88.6 86.6 65.8 86.2 57.4 85.7 77.3 79.3

DeepLab† [4] 92.6 60.4 91.6 63.4 76.3 95.0 88.4 92.6 32.7 88.5 67.6 89.6 92.1 87.0 87.4 63.3 88.3 60.0 86.8 74.5 79.7

PSPNet† 95.8 72.7 95.0 78.9 84.4 94.7 92.0 95.7 43.1 91.0 80.3 91.3 96.3 92.3 90.1 71.5 94.4 66.9 88.8 82.0 85.4

Table 6. Per-class results on PASCAL VOC 2012 testing set. Methods pre-trained on MS-COCO are marked with ‘†’.

Method IoU cla. iIoU cla. IoU cat. iIoU cat.

CRF-RNN [41] 62.5 34.4 82.7 66.0

FCN [26] 65.3 41.7 85.7 70.1

SiCNN [16] 66.3 44.9 85.0 71.2

DPN [25] 66.8 39.1 86.0 69.1

Dilation10 [40] 67.1 42.0 86.5 71.1

LRR [9] 69.7 48.0 88.2 74.7

DeepLab [4] 70.4 42.6 86.4 67.7

Piecewise [20] 71.6 51.7 87.3 74.1

PSPNet 78.4 56.7 90.6 78.6

LRR‡ [9] 71.8 47.9 88.4 73.9

PSPNet‡ 80.2 58.1 90.6 78.2

Table 7. Results on Cityscapes testing set. Methods trained using

both fine and coarse data are marked with ‘‡’.

in different seasons. The images are divided into sets with

numbers 2,975, 500, and 1,525 for training, validation and

testing. It defines 19 categories containing both stuff and

objects. Also, 20,000 coarsely annotated images are pro-

vided for two settings in comparison, i.e., training with only

fine data or with both the fine and coarse data. Methods

trained using both fine and coarse data are marked with ‘‡’.

Detailed results are listed in Table 7. Our base model is

ResNet101 as in DeepLab [4] for fair comparison and the

testing procedure follows Section 5.3.

Statistics in Table 7 show that PSPNet outperforms other

methods with notable advantage. Using both fine and coarse

data for training makes our method yield 80.2 accuracy.

Several examples are shown in Fig. 8. Detailed per-class

results on testing set are shown in our project website.

6. Concluding Remarks

We have proposed an effective pyramid scene parsing

network for complex scene understanding. The global pyra-

Figure 8. Examples of PSPNet results on Cityscapes dataset.

mid pooling feature provides additional contextual informa-

tion. We have also provided a deeply supervised optimiza-

tion strategy for ResNet-based FCN network. We hope the

implementation details publicly available can help the com-

munity adopt these useful strategies for scene parsing and

semantic segmentation and advance related techniques.
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