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Abstract

In this paper, we address the problem of person re-

identification, which refers to associating the persons cap-

tured from different cameras. We propose a simple yet ef-

fective human part-aligned representation for handling the

body part misalignment problem. Our approach decom-

poses the human body into regions (parts) which are dis-

criminative for person matching, accordingly computes the

representations over the regions, and aggregates the sim-

ilarities computed between the corresponding regions of

a pair of probe and gallery images as the overall match-

ing score. Our formulation, inspired by attention mod-

els, is a deep neural network modeling the three steps

together, which is learnt through minimizing the triplet

loss function without requiring body part labeling infor-

mation. Unlike most existing deep learning algorithms

that learn a global or spatial partition-based local rep-

resentation, our approach performs human body parti-

tion, and thus is more robust to pose changes and vari-

ous human spatial distributions in the person bounding box.

Our approach shows state-of-the-art results over standard

datasets, Market-1501, CUHK03, CUHK01 and VIPeR. 1

1. Introduction

Person re-identification is a problem of associating the

persons captured from different cameras located at differ-

ent physical sites. If the camera views are overlapped, the

solution is trivial: the temporal information is reliable to

solve the problem. In some real cases, the camera views are

significantly disjoint and the temporal transition time be-

tween cameras varies greatly, making the temporal informa-

tion not enough to solve the problem, and thus this problem

becomes more challenging. Therefore, a lot of solutions ex-

ploiting various cues, such as appearance [12, 32, 23, 26],

which is also the interest in this paper, have been developed.

Recently, deep neural networks have been becoming a
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Figure 1. Illustrating the necessity of body part partition (best

viewed in color). Using spatial partition without further process-

ing, the regions (1) and (2), as well as (4) and (5), are not matched

though they are from the same person; but the regions (1) and

(3), as well as (5) and (6), which are from different persons, are

matched. With body part decomposition, there is no such mis-

match. More examples are shown in d, e, and f.

dominate solution for the appearance representation. The

straightforward way is to extract a global representation [33,

50, 6], using the deep network pretrained over ImageNet

and optionally fine-tuned over the person re-identification

dataset. Local representations are computed typically by

partitioning the person bounding box into cells, e.g., di-

viding the images into horizontal stripes [56, 9, 44] or

grids [23, 1], and extracting deep features over the cells.

These solutions are based on the assumption that the human

poses and the spatial distributions of the human body in the

bounding box are similar. In real cases, for example, the

bounding box is detected rather than manually labeled and

thus the human may be at different positions, or the human

poses are different, such an assumption does not hold. In

other words, spatial partition is not well aligned with hu-

man body parts. Thus, person re-identification, even with

subsequent complex matching techniques (e.g., [1, 23]) to

eliminate the misalignment, is often not quite reliable. Fig-

ure 1 provides illustrative examples.

In this paper, we propose a part-aligned human repre-

sentation, which addresses the above problem instead in the

representation learning stage. The key idea is straightfor-

ward: detect the human body regions that are discrimina-
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tive for person matching, compute the representations over

the parts, and then aggregate the similarities that are com-

puted between the corresponding parts. Inspired by atten-

tion models [53], we present a deep neural network method,

which jointly models body part extraction and represen-

tation computation, and learns model parameters through

maximizing the re-identification quality in an end-to-end

manner, without requiring the labeling information about

human body parts. In contrast to spatial partition, our ap-

proach performs human body part partition, thus is more

robust to human pose changes and various human spatial

distributions in the bounding box. Empirical results demon-

strate that our approach achieves competitive/superior per-

formance over standard datasets: Market-1501, CUHK03,

CUHK01 and VIPeR.

2. Related Work

There are two main issues in person re-identification:

representation and matching. Various solutions, separately

or jointly addressing the two issues, have been developed.

Separate solutions. Various hand-crafted representations

have been developed, such as the ensemble of local features

(ELF) [15], fisher vectors (LDFV) [29], local maximal oc-

currence representation (LOMO) [26], hierarchal Gaussian

descriptor (GOG) [31], and so on. Most of the representa-

tions are designed with the goal of handling light variance,

pose/view changes, and so on. Person attributes or salient

patterns, such as female/male, wearing hat or not, have also

been exploited to distinguish persons [40, 41, 61].

A lot of similarity/metric learning techniques [57, 58, 33,

27, 19] have been applied or designed to learn metrics, ro-

bust to light/view/pose changes, for person matching. The

recent developments include soft and probabilistic patch

matching for handling pose misalignment [4, 3, 36], sim-

ilarity learning for dealing with probe and gallery images

with different resolutions [24, 17], connection with trans-

fer learning [34, 38], reranking inspired by the connection

with image search [65, 13], partial person matching [66],

human-in-the-loop learning [30, 46], and so on.

Deep learning-based solutions. The success of deep learn-

ing in image classification has been inspiring a lot of studies

in person re-identification. The off-the-shelf CNN features,

extracted from the model trained over ImageNet, without

fine tuning, does not show the performance gain [33]. The

promising direction is to learn the representation and the

similarity jointly, except some works [51, 62] that do not

learn the similarity but adopt the classification loss by re-

garding the images about one person as a category.

The network typically consists of two subnetworks: one

for feature extraction and the other for matching. The

feature extraction subnetwork could be simply (i) a shal-

low network [23] with one or two convolutional and max-

pooling layers for feature extraction, or (ii) a deep network,

e.g., VGGNet and its variants [39, 49] and GoogLeNet [42,

59], which are pretrained over ImageNet and fine-tuned for

person re-identification. The feature representation can be

(i) a global feature, e.g., the output of the fully-connected

layer [6, 52], which does not explicitly model the spatial in-

formation, or (ii) a combination (e.g., concatenation [56, 9]

or contextual fusion [44]) of the features over regions, e.g.,

horizontal stripes [56, 9, 44], or grid cells [23, 1], which are

favorable for the later matching process to handle body part

misalignment. Besides, the cross-dataset information [51]

is also exploited to learn an effective representation.

The matching subnetwork can simply be a loss layer that

penalizes the misalignment between learnt similarities and

ground-truth similarities, e.g., pairwise loss [56, 44, 23, 1,

37], triplet loss and its variants [11, 9, 41, 45]. Besides using

the off-the-shelf similarity function [56, 44, 9], e.g., cosine

similarity or Euclidean distance, for comparing the feature

representation, specific matching schemes are designed to

eliminate the influence from body part misalignment. For

instance, a matching subnetwork conducts convolution and

max pooling operations, over the differences [1] or the con-

catenation [23, 59] of the representations over grid cells of a

pair of person images, to handle the misalignment problem.

The approach with so called single-image and cross-image

representations [45] essentially combines the off-the-shelf

distance and the matching network handling the misalign-

ment. Instead of only matching the images over the final

representation, the matching map in the intermediate fea-

tures is used to guide the feature extraction in the later lay-

ers through a gated CNN [43].

Our approach. In this paper, we focus on the feature ex-

traction part and introduce a human body part-aligned rep-

resentation. Our approach is related to but different from

the previous part-aligned approaches (e.g., part/pose detec-

tion [10, 54, 2, 63]), which need to train a part/pose segmen-

tation or detection model from the labeled part mask/box or

pose ground-truth and subsequently extract representations,

where the processes are conducted separately. In contrast,

our approach does not require those labeling information,

but only uses the similarity information (a pair of person

images are about the same person or different persons),

to learn the part model for person matching. The learnt

parts are different from the conventional human body parts,

e.g., Pascal-Person-Parts [7], and are specifically for person

matching, implying that our approach potentially performs

better, which is verified by empirical comparisons with the

algorithms based on the state-of-the-art part segmentation

approach (deeplab [5]) and pose estimator (convolutional

pose machine [47]).

Our human body part estimation scheme is inspired by

the attention model that is successfully applied to many ap-

plications such as image captioning [53]. Compared to the
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work [28] that is based on attention models and LSTM, our

approach is simple and easily implemented, and empirical

results show that our approach performs better.

3. Our Approach

Person re-identification aims to find the images that are

about the same identity with the probe image from a set

of gallery images. It is often regarded as a ranking prob-

lem: given a probe image, the gallery images about the

same identity are thought closer to the probe image than

the gallery images about different identities.

The training data is typically given as follows. Given a

set of images I = {I1, I2, . . . , IN}, we form the training

set as a set of triplets, T = {(Ii, Ij , Ik)}, where (Ii, Ij) is

a positive pair of images that are about the same person and

(Ii, Ik) is a negative pair of images that are about different

persons.

Our approach formulates the ranking problem using the

triplet loss function,

ℓtriplet(Ii, Ij , Ik)

= [d(h(Ii), h(Ij))− d(h(Ii), h(Ik)) +m]+. (1)

Here (Ii, Ij , Ik) ∈ T . m is the margin by which the dis-

tance between a negative pair of images is greater than that

between a positive pair of images. In our implementation,

m is set to 0.2 similar to [35]. d(x,y) = ‖x− y‖22 is a Eu-

clidean distance. [z]+ = max(z, 0) is the hinge loss. h(I)
is a feature extraction network that extracts the representa-

tion of the image I and will be discussed in detail later. The

whole loss function is as follows,

L(h) =
1

|T |

∑

(Ii,Ij ,Ik)∈T

ℓtriplet(Ii, Ij , Ik), (2)

where |T | is the number of triplets in T .

3.1. Part­Aligned Representation

The part-aligned representation extractor, is a deep neu-

ral network, consisting of a fully convolutional neural net-

work (FCN) whose output is an image feature map, fol-

lowed by a part net which detects part maps and outputs

the part features extracted over the parts. Rather than par-

titioning the image box spatially to grid cells or horizontal

stripes, our approach aims to partition the human body to

aligned parts.

The part net, as illustrated in Figure 2, contains several

branches. Each branch receives the image feature map from

the FCN as the input, detects a discriminative region (part2),

and extracts the feature over the detected region as the out-

put. As we will see, the detected region usually lies in the

2In this paper, we use the two terms, part and region, interchangeably

for the same meaning.

Part MapFeature Global Linear
L2Concate.

K branches

EmbeddingPoolingDetectorMaps

Figure 2. Illustrating the part net. It consists of K branches. Each

branch takes the image feature map as the input and estimates a

part map, which is used for weighting the image feature map fol-

lowed by an average pooling operator. The part features from the

K branches are concatenated as the final human representation.

human body region, which is as expected because these re-

gions are informative for person matching. Thus, we call

the net as a part net. Let a 3-dimensional tensor T represent

the image feature maps computed from the FCN and thus

t(x, y, c) represent the cth response over the location (x, y).
The part map detector estimates a 2-dimensional map Mk,

where mk(x, y) indicates the degree that the location (x, y)
lies in the kth region, from the image feature map T:

Mk = NMapDetectork(T), (3)

whereNMapDetectork(·) is a region map detector imple-

mented as a convolutional network.

The part feature map Tk for the kth region is computed

through a weighting scheme,

tk(x, y, c) = t(x, y, c)×mk(x, y), (4)

followed by an average pooling operator, f̄k =
AvePooling(Tk), where f̄k(c) = Averagex,y[tk(x, y, c)].
Then a linear dimension-reduction layer, implemented as

a fully-connected layer, is performed to reduce f̄k to a d-

dimensional feature vector fk = WFCk
f̄k. Finally, we con-

catenate all the part features,

f = [f⊤1 f⊤2 . . . f⊤K ]⊤, (5)

and perform an L2 normalization, yielding the human rep-

resentation h(I).

3.2. Optimization

We learn the network parameters, denoted by θ, by min-

imizing the summation of triplet loss functions over triplets

formulated in Equation 2. The gradient is computed as

∂L

∂θ
=

1

|T |

∑

(Ii,Ij ,Ik)∈T

∂ℓtriplet(Ii, Ij , Ik)

∂θ
. (6)

We have3

∂ℓtriplet(Ii, Ij , Ik)

∂θ

= δℓtriplet(Ii,Ij ,Ik)>0 × 2[
∂h(Ii)

∂θ
(h(Ik)− h(Ij))+

∂h(Ij)

∂θ
(h(Ij)− h(Ii)) +

∂h(Ik)

∂θ
(h(Ii)− h(Ik))].

3The gradient at the non-differentiable point is omitted like the com-

mon way to handle this case in deep learning.
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Thus, we transform the gradient to the following form,

∂L

∂θ
=

1

|T |

N∑

n=1

∂h(In)

∂θ
αn, (7)

where αn is a weight vector depending on the current net-

work parameters, and computed as follows,

αn = 2[
∑

(In,Ij ,Ik)∈T

δℓtriplet(In,Ij ,Ik)>0(h(Ik)− h(Ij))+

∑

(Ii,In,Ik)∈T

δℓtriplet(Ii,In,Ik)>0(h(In)− h(Ii))+

∑

(Ii,Ij ,In)∈T

δℓtriplet(Ii,Ij ,In)>0(h(Ii)− h(In))]. (8)

Equation 7 suggests that the gradient for the triplet loss is

computed like that for the unary classification loss. Thus,

in each iteration of SGD (stochastic gradient descent) we

can draw a mini-batch of (M ) samples rather than sam-

ple a subset of triplets: one pass of forward propagation to

compute the representation h(In) of each sample, compute

the weight αn over the mini-batch, compute the gradient
∂h(In)

θ
, and finally aggregate the gradients over the mini-

batch of samples. Directly drawing a set of triplets usually

leads to that a larger number of (more than M ) samples are

contained and thus the computation is more expensive than

our mini-batch sampling scheme.

3.3. Implementation details

Network architecture. We use a sub-network of the first

version of GoogLeNet [42], from the image input to the

output of inception 4e, followed by a 1 × 1 convolutional

layer with the output of 512 channels, as the image feature

map extraction network. Specifically, the person image box

is resized to 160 × 80 as the input, and thus the size of the

feature map of the feature map extraction network is 10× 5
with 512 channels. For data preprocessing, we use the stan-

dard horizontal flips of the resized image. In the part net,

the part estimator (NMapDetectork in Equation 3) is simply

a 1×1 convolutional layer followed by a nonlinear sigmoid

layer. There are K part detectors, where K is determined

by cross-validation and empirically studied in Section 4.3.

Network Training. We use the stochastic gradient descent

algorithm to train the whole network based on Caffe [16].

The image feature map extraction part is initialized using

the GoogLeNet model, pretrained over ImageNet. In each

iteration, we sample a mini-batch of 400 images, e.g., there

are on average 40 identities with each containing 10 im-

ages on Market-1501 and CUHK03. In total, there are about

1.4 million triplets in each iteration. From Equation 8, we

see that only a subset of triplets, whose predicted similar-

ity order is not consistent to the ground-truth order, i.e.,

Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8Image

(a)

(b)

(c)

(d)

Figure 3. Examples of the part maps learnt by the part map esti-

mator for test images (best viewed in color).

ℓtriplet(In, Ij , Ik) > 0, are counted for the weight (θ) up-

date, and accordingly we use the number of counted triplets

to replace |T | in Equation 7.

We adopt the initial learning rate, 0.01, and divide it by

5 every 20K iterations. The weight decay is 0.0002 and the

momentum for gradient update is 0.9. Each model is trained

for 50K iterations within around 12 hours on a K40 GPU.

For testing, it takes on average 0.005 second on one GPU to

extract the part-aligned representation.

3.4. Discussions

Body part partition and spatial partition. Spatial parti-

tion, e.g., grid or stride-based, may not be well aligned with

human body parts, due to pose changes or various human

spatial distributions in the human image box. Thus, match-

ing techniques, e.g., through complex networks [1, 23, 59],

have been developed to eliminate the misalignment prob-

lem. In contrast, our approach addresses this problem in

the representation stage, with a simple Euclidean distance

for person matching, which potentially makes existing fast

similarity search algorithms easily applied, and thus the on-

line search stage more efficient.

Figure 3 shows the examples about the parts our ap-

proach learns for the test images. It can be seen that the

3222



parts are generally well aligned for the pair of images about

the same person: the parts almost describe the same human

body regions, except that one or two parts in the pair of

images describe different regions, e.g., the first part in Fig-

ure 3 (b). In particular, the alignment is also good for the

examples of Figure 3 (c, d), where the person in the second

image is spatially distributed very differently from the per-

son in the first image: one is on the right in Figure 3 (c), and

one is small and on the bottom in Figure 3 (d).

In addition, we empirically compare our approach with

two spatial partition based methods: dividing the image box

into 5 horizontal stripes or 5× 5 girds to form region maps.

We use the region maps to replace the part mask in our ap-

proach and then learn the spatial partition-based represen-

tation. The results shown in Table 1 demonstrate that the

human body part partition method is more effective.

Table 1. The performance (%) of our approach and spatial partition

based methods (stripe and grid) over Market-1501 and CUHK03.
Dataset Method rank-1 rank-5 rank-10 rank-20

ours 81.0 92.0 94.7 96.4

Market-1501 stripe 74.1 89.0 92.3 95.1

grid 73.4 88.2 91.8 94.4

ours 85.4 97.6 99.4 99.9

CUHK03 stripe 81.4 97.1 99.3 99.7

grid 78.2 96.7 99.2 99.8

Learnt body parts. We have several observations about

the learnt parts. The head region is not included. This is be-

cause the face is not frontal and with low resolution and ac-

cordingly not reliable for differentiating different persons.

The skin regions are often also not included except the arms

located nearby the top body in Figure 3 (c) as the skin does

not provide discriminant information, e.g., the leg skins in

Figure 3 (c) are not included while the legs with trousers in

Figure 3 (b) are included in Map4-6 .

From Figure 3, we can see that the first three maps, Map1
- Map3, are about the top clothing. There might be some

redundancy. In the examples of Figure 3 (c,d), the first two

masks are very close. In contrast, in the examples of Fig-

ure 3 (b), the masks are different, and are different regions

of the top, though all are about the top clothing. In this

sense, the first three masks act like a mixture model to de-

scribe the top clothing as the top parts are various due to

pose and view variation. Similarly, Map4 and Map6 are

both about the bottom.

Separate part segmentation. We conduct an experiment

with separate part segmentation. We use the state-of-the-

art part segmentation model [5] learnt from the PASCAL-

Person-Part dataset [7] (6 part classes), to compute the mask

Table 2. The performance of our approach, and separate part seg-

mentation over Market-1501 and CUHK-03.
Dataset Method rank-1 rank-5 rank-10 rank-20

Market-1501
ours (6 parts) 80.4 91.5 94.3 96.4

part seg. (6 parts) 61.2 80.3 86.9 91.0

CUHK03
ours (6 parts) 85.1 97.6 98.2 99.4

part seg. (6 parts) 70.7 90.4 94.8 97.6

for both training and test images. We modify our network

by replacing the masks from the part net with the masks

from the part segmentation model. In the training stage, we

learn the modified network (the mask fixed) using the same

setting with our approach.

The results are shown in Table 2 and the performance

is poor compared with our method. This is reasonable be-

cause the parts in our approach are learnt directly for person

re-identification while the parts learnt from the PASCAL-

Person-Part dataset might not be very good because it does

not take consideration into the person re-identification prob-

lem. We also think that if the human part segmentation of

the person re-identification training images is available, ex-

ploiting the segmentation as an extra supervision, e.g., the

learnt part corresponds to a human part, or a sub-region of

the human part, is helpful for learning the part net.

4. Experiments

4.1. Datasets

Market-1501. This dataset [64] is one of the largest bench-

mark datasets for person re-identification. There are six

cameras: 5 high-resolution cameras, and one low-resolution

camera. There are 32, 668 DPM-detected pedestrian im-

age boxes of 1, 501 identities: 750 identifies are used for

training and the remaining 751 for testing. There are

3, 368 query images and the large gallery (database) include

19, 732 images with 2, 793 distractors.

CUHK03. This dataset [23] consists of 13, 164 images of

1, 360 persons, captured by six cameras. Each identity only

appears in two disjoint camera views, and there are on av-

erage 4.8 images in each view. We use the provided train-

ing/test splits [23] on the labeled data set. For each test

identity, two images are randomly sampled as the probe and

gallery images, respectively, and the average performance

over 20 trials is reported as the final result.

CUHK01. This dataset [22] contains 971 identities cap-

tured from two camera views in the same campus with

CUHK03. Each person has two images, each from one cam-

era view. Following the setup [1], we report the results of

two different settings: 100 identifies for testing, and 486
identities for testing.

VIPeR. This dataset [14] contains two views of 632 per-

sons. Each pair of images about one person are captured by

different cameras with large viewpoint changes and various

illumination conditions. The 632 person images are divided

into two halves, 316 for training and 316 for testing.

4.2. Evaluation Metrics

We adopt the widely-used evaluation protocol [23, 1]. In

the matching process, we calculate the similarities between

each query and all the gallery images, and then return the
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Table 3. The validation performance with different numbers (K)

of parts over CUHK03. The model is trained over a random half

of the training data, and the performance is reported over the re-

maining half (as the validation set). The best results are in bold.

#parts rank-1 rank-5 rank-10 rank-20

1 77.7 95.6 98.4 99.7

2 80.4 96.7 98.4 99.4
4 82.0 96.7 98.8 99.7

8 83.8 96.9 98.3 99.7

12 83.6 97.3 98.8 99.6

Table 4. The performances of our approach and human segmen-

tation over Market-1501 and CUHK03.
Dataset Method rank-1 rank-5 rank-10 mAP

Market-1501
ours 81.0 92.0 94.7 63.4

human seg. 74.2 90.0 93.8 58.9

CUHK03
ours 85.4 97.6 99.4 90.9

human seg. 82.7 95.9 97.9 88.6

ranked list according to the similarities. All the experiments

are under the single query setting. The performances are

evaluated by the cumulated matching characteristics (CMC)

curves, which is an estimate of the expectation of finding the

correct match in the top n matches. We also report the mean

average precision (mAP) score [64] over Market-1501.

4.3. Empirical Analysis

The number of parts. We empirically study how the num-

ber of parts affects the performance. We conduct an experi-

ment over CUHK03: randomly partition the training dataset

into two parts, one for model learning and the remaining for

validation. The performances for various numbers of parts,

K = 1, 2, 4, 8, 12, are given in Table 3. It can be seen that

(i) more parts for the rank-1 score lead to better scores till 8
parts and then the scores become stable, and (ii) the scores

of different number of parts at positions 5, 10, and 20 are

close except the score of 1 part at position 5. Thus, in our

experiments, we choose K = 8 in the part net for all the

four datasets. It is possible that in other datasets the optimal

K obtained through validation is different.

Human segmentation and body part segmentation. The

benefit from the body part segmentation lies in two points:

(i) remove the background and (ii) part alignment. We com-

pare our approach and the approach with human segmenta-

tion that is implemented as our approach with 1 part and

is able to remove the background. The comparison shown

from Table 4 over Market-1501 and CUHK03 shows that

body part segmentation performs superiorly in general. The

results imply that body part segmentation is beneficial.

Comparison with non-human/part-segmentation. We

compare the performances of two baseline networks with-

out segmentation, which are modified from our network: (i)

replace the part net with a fully-connected layer outputting

the feature vector with the same dimension (512-d) and (ii)

replace the part net with an global average-pooling layer

which also produces a 512-d feature vector.

Table 5. The performances of our approach, two baseline net-

works without segmentation, modified by replacing the part net

in our network with a fully-connected (FC) layer and an average

pooling (pooling) layer over Market-1501 and CUHK03.
Dataset Method rank-1 rank-5 rank-10 mAP

Market-1501

ours 81.0 92.0 94.7 63.4

FC 75.9 89.3 92.9 54.3

pooling 75.9 89.0 92.2 55.6

CUHK03

ours 85.4 97.6 99.4 90.9

FC 80.3 95.5 98.6 87.3

pooling 82.4 96.8 99.0 88.9

The fully-connected layer followed by the last convolu-

tional layer in (i) has some capability to differentiate dif-

ferent spatial regions to some degree through the linear

weights, which are however the same for all images, yield-

ing limited ability of differentiation. The average-pooling

method in (ii) ignores the spatial information, though it is

robust to the translations. In contrast, our approach is also

able to differentiate body regions and the differentiation is

adaptive to each input image for translation/pose invariance.

The comparison over two datasets, Market-1501 and

CUHK03, is given in Table 5. It can be seen that our ap-

proach outperforms these two baseline methods, which in-

dicates that the part segmentation is capable of avoiding the

mismatch due to part misalignment in spatial partition and

improving the performance.

Image feature map extraction networks. We show that

the part net can boost the performance for various feature

map extraction FCNs. We report two extra results with us-

ing AlexNet [21] and VGGNet [39] as well as the result

using GoogLeNet [42]. For AlexNet and VGGNet, we re-

move the fully connected layers and use all the remaining

convolutional layers as the feature map extraction network,

and the training settings are the same as provided in Sec-

tion 3.3. The results are depicted in Figure 4. It can be

seen that our approach consistently gets the performance

gain for AlexNet, VGGNet and GoogLeNet. In particular,

the gains with AlexNet and VGGNet are more significant:

compared with the baseline method with FC, the gains are

6.8, 6.4, and 5.1 for AlexNet, VGGNet and GoogLeNet,

respectively, and compared with the baseline method with

pooling, the gains are 5.9, 4.4, and 3.0, respectively.

Comparison with other attention models. The part map

detector is inspired by the spatial attention model. It is

slightly different from the standard attention model: us-

ing sigmoid to replace softmax, which brings more than 2%
gain for rank-1 scores. The comparative attention network

(CAN) approach [28] is also based on the attention model

and adopts LSTM to help learn part maps. It is not easy

for us to have a good implementation for CAN. Thus, we

report the results with AlexNet, which CAN is based on,

as our base network. The comparison is given in Table 6.

We can see that the overall performance of our approach is

better except on the CUHK01 dataset for 100 test IDs.
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Figure 4. The performance of our approach and the two baseline

networks (FC and Pooling) with different feature map extraction

networks over CUHK03. Our approach consistently boosts the

performance for all the three networks (best viewed in color).

Table 6. Compared with softmax over spatial responses and

CAN [28]. All are based on AlexNet. Larger is better.
rank-1 rank-5 rank-10 rank-20

CUHK03 (labeled)

CAN 65.65 91.28 96.29 98.17

Ours 68.90 91.40 95.25 98.3

Softmax 65.14 90.64 95.43 97.79

CUHK03 (detected)

CAN 63.05 82.94 88.17 93.29

Ours 65.64 89.50 93.93 96.71

Softmax 64.36 89.50 94.71 97.43

CUHK01-100

CAN 81.04 96.89 99.67 100

Ours 79.25 94.00 96.37 98.75

Softmax 74.64 91.27 94.55 97.27

Market

CAN 48.24 mAP = 24.43

Ours 64.22 mAP = 41.80

Softmax 62.23 mAP = 41.01

4.4. Comparison with State­of­the­Arts

Market-1501. We compare our method with recent

state-of-the-arts, which are separated into four categories:

feature extraction (F), metric learning (M), deeply learnt

feature representation (DF), deep learning with matching

subnetwork (DMN). The results in Table 7 are obtained un-

der the single query setting.

The competitive algorithm, pose-invariant embedding

(PIE) [63] extracts part-aligned representation, based on

state-of-the-art pose estimator CPM [47] for part detection

that is different from ours. PIE uses ResNet-50 which is

more powerful than GoogLeNet our approach uses. We ob-

serve that our approach performs the best and outperforms

PIE: 2.35 gain for rank-1 and 9.5 gain for mAP compared

to PIE w/o using KISSME, and 1.67 for rank-1 and 7.4 gain

for mAP compared to PIE w/ using KISSME.

CUHK03. There are two versions of person boxes: one is

manually labeled and the other one is detected with a pedes-

trian detector. We report the results for both versions and

all the previous results on CUHK03 are reported on the la-

beled version. The results are given in Table 8 for manually-

labeled boxes and in Table 9 for detected boxes.

Our approach performs the best on both versions. On the

one hand, the improvement over the detected boxes is more

significant than that over the manually-labeled boxes. This

is because the person body parts in the manually-labeled

boxes are spatially distributed more similarly. On the other

Table 7. Performance comparison of state-of-the-art methods on

the recently released challenging dataset, Market-1501. The meth-

ods are separated into four categories: feature extraction (F),

metric learning (M), deeply learnt feature representation (DF),

deep learning with matching subnetwork (DMN).
Method rank-1 rank-5 rank-10 mAP

F
LOMO [26] (CVPR15) 26.1 - - 7.8
BoW [64] (ICCV15) 35.8 52.4 60.3 14.8
KISSME [20] (CVPR12) 44.4 63.9 72.2 20.8
WARCA [18] (ECCV16) 45.2 68.2 76.0 -

M TMA [30] (ECCV16) 47.9 - - 22.3
SCSP [3] (CVPR16) 51.9 72.0 79.0 26.4
DNS [57] (CVPR16) 55.4 - - 29.9

DMN PersonNet [49] (ArXiv16) 37.2 - - 18.6
Gated S-CNN [43] (ECCV16) 65.9 - - 39.6

DF

PIE [63] 78.65 90.26 93.59 53.87
PIE [63] + KISSME [20] (Arxiv 2016) 79.33 90.76 94.41 55.95
SSDAL [41] (ECCV16) 39.4 - - 19.6
Our Method 81.0 92.0 94.7 63.4

Table 8. Performance comparison on CUHK03 for manually la-

beled human boxes.
Method rank-1 rank-5 rank-10 rank-20

BoW [64] (ICCV15) 18.9 36.2 46.8 -

F LOMO [26] (CVPR15) 52.2 82.2 92.1 96.3
GOG [31] (CVPR16) 67.3 91.0 96.0 -

KISSME [20] (CVPR12) 47.9 69.3 78.9 87.0
SSSVM [58] (CVPR16) 57.0 84.8 92.5 96.4

M DNS [57] (CVPR16) 58.9 85.6 92.5 96.3
Ensembles [33] (CVPR15) 62.1 89.1 94.3 97.8
WARCA [18] (ECCV16) 78.4 94.6 97.5 99.1

DMN

DeepReID [23] (CVPR14) 20.7 51.3 68.7 83.1
IDLA [1] (CVPR15) 54.7 86.4 93.9 98.1
PersonNet [49] (ArXiv16) 64.8 89.4 94.9 98.2
DCSL [59] (IJCAI16) 80.2 97.7 99.2 99.8

DF Deep Metric [37] (ECCV16) 61.3 88.5 96.0 99.0
Our Method 85.4 97.6 99.4 99.9

hand, the performance of our approach over the manually-

labeled boxes are better than that over the detected-labeled

boxes. This means that the person position in the box

(manually-labeled boxes are often better) influences the part

extraction quality, which suggests that it is a necessity to

learn a more robust part extractor with more supervision in-

formation or over a larger dataset.

Compared with the competitive method DCSL [59]

which is also based on the GoogLeNet, the overall per-

formance of our approach, as shown in Table 8, is bet-

ter on CUHK03 except that the rank-5 score of DCSL

is slightly better by 0.1%. This is an evidence demon-

strating the powerfulness of the part-aligned representation

though DCSL adopts the strong matching subnetwork to

improve the matching quality. Compared with the second

best method, PIE, on the detected case as shown in Table 9,

our approach achieves 4.5 gain at rank-1.

CUHK01. There are two evaluation settings [1]: 100 test

IDs, and 486 test IDs. Since there are a small number (485)

of training identities for the case of 486 test IDs, as done

in [1, 6, 59], we fine-tune the model, which is learnt from

the CUHK03 training set, over the 485 training identities:

the rank-1 score from the model learnt from CUHK03 is

44.59% and it becomes 72.3% with the fine-tuned model.

The results are reported in Table 10 and Table 11, re-
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Table 9. Performance comparison on CUHK03 for detected boxes.
Method rank-1 rank-5 rank-10 rank-20

F
LOMO [26] (CVPR15) 46.3 78.9 88.6 94.3
GOG [31] (CVPR16) 65.5 88.4 93.7 -

M

LMNN [48] (NIPS05) 6.3 17.5 28.2 45.0
KISSME [20] (CVPR12) 11.7 33.9 48.2 65.0
SSSVM [58] (CVPR16) 51.2 81.5 89.9 95.0
DNS [57] (CVPR16) 53.7 83.1 93.0 94.8

DMN
DeepReID [23] (CVPR14) 19.9 50.0 64.0 78.5
IDLA [1] (CVPR15) 45.0 76.0 83.5 93.2
SIR-CIR [45] (CVPR16) 52.2 85.0 92.0 97.0

DF
PIE [63] + KISSME [20] (Arxiv 2016) 67.10 92.20 96.60 98.10
Deep Metric [37] (ECCV16) 52.1 84.0 92.0 96.8
Our Method 81.6 97.3 98.4 99.5

Table 10. Performance comparison on CUHK01 for 100 test IDs.
Method rank-1 rank-5 rank-10 rank-20

DMN

DeepReID [23] (CVPR14) 27.9 58.2 73.5 86.3
IDLA [1] (CVPR15) 65.0 88.7 93.1 97.2
Deep Ranking ( [6] (TIP16)) 50.4 70.0 84.8 92.0
PersonNet [49] (ArXiv16) 71.1 90.1 95.0 98.1
SIR-CIR [45] (CVPR16) 71.8 91.6 96.0 98.0
DCSL [59] (IJCAI16) 89.6 97.8 98.9 99.7

DF Deep Metric [37] (ECCV16) 69.4 90.8 96.0 -

Our Method 88.5 98.4 99.6 99.9

Table 11. Performance comparison on CUHK01 for 486 test IDs.
Method rank-1 rank-5 rank-10 rank-20

F

Semantic [38] (CVPR15) 31.5 52.5 65.8 77.6
MirrorRep [8] (IJCAI15) 40.4 64.6 75.3 84.1
LOMO [26] (CVPR15) 49.2 75.7 84.2 90.8
GOG [31] (CVPR16) 57.8 79.1 86.2 92.1
LMNN [48] (NIPS05) 13.5 31.3 42.3 54.1
SalMatch [60] (ICCV13) 28.5 45.9 55.7 68.0

M DNS [57] (CVPR16) 65.0 85.0 89.9 94.4
WARCA [18] (ECCV16) 65.6 85.3 90.5 95.0
SSSVM [58] (CVPR16) 66.0 89.1 92.8 96.5

DMN

IDLA [1] (CVPR15) 47.5 71.6 80.3 87.5
Deep Ranking [6] (TIP16) 50.4 70.0 84.8 92.0
DCSL [59] (IJCAI16) 76.5 94.2 97.5 -

DF
TCP-CNN [9] (CVPR16) 53.7 84.3 91.0 96.3
Our Method 72.3 91.0 94.9 97.2
Our Method + remove pool3 75.0 93.5 95.7 97.7

spectively. Our approach performs the best among the al-

gorithms w/o using matching subnetwork. Compared to the

competitive algorithm DCSL [59] that uses matching sub-

network, we can see that for 100 test IDs, our approach per-

forms better in general except a slightly low rank-1 score

and that for 486 test IDs our initial approach performs worse

and with a simple trick, removing one pooling layer to dou-

ble the feature map size, the performance is much closer.

One notable point is that our approach is advantageous in

scaling up to large datasets.

VIPeR. The dataset is relatively small and the training

images are not enough for training. We fine-tune the

model learnt from CUHK03 following [43, 1]. The re-

sults are presented in Table 12. Our approach outperforms

other deep learning-based approaches except PIE [63] with

complicated schemes while performs poorer than the best-

performed feature extraction approach GOG [31] and met-

ric learning method SCSP [3]. In comparison with PIE [63],

our approach performs better than PIE with data augmen-

tation Mirror [8] and metric learning MFA [55] and lower

than PIE with a more complicated fusion scheme, which

our approach might benefit from. In general, the results

Table 12. Results on a relatively small dataset, VIPeR.
Method rank-1 rank-5 rank-10 rank-20

F

ELF [15] (ECCV 2008) 12.0 44.0 47.0 61.0
BoW [64] (ICCV15) 21.7 42.0 50.0 60.9
LOMO [26] (CVPR15) 40.0 68.1 80.5 91.1
Semantic [38] (CVPR15) 41.6 71.9 86.2 95.1
MirrorRep [8] (IJCAI15) 43.0 75.8 87.3 94.8
GOG [31] (CVPR16) 49.7 79.7 88.7 94.5

M

LMNN [48] (NIPS05) 11.2 32.3 44.8 59.3
KISSME [20] (CVPR12) 19.6 47.5 62.2 77.0
LADF [25] (CVPR13) 30.0 64.7 79.0 91.3
WARCA [18] (ECCV16) 37.5 70.8 82.0 92.0
DNS [57] (CVPR16) 42.3 71.5 82.9 92.1
SSSVM [58] (CVPR16) 42.7 - 84.3 91.9
TMA [30] (ECCV16) 43.8 - 83.9 91.5
SCSP [3] (CVPR16) 53.5 82.6 91.5 96.7

DMN

IDLA [1] (CVPR15) 34.8 63.6 75.6 84.5
Gated S-CNN [43] (ECCV16) 37.8 66.9 77.4 -

SSDAL [41] (ECCV16) 37.9 65.5 75.6 88.4
SIR-CIR [45] (CVPR16) 35.8 67.4 83.5 -

Deep Ranking [6] (TIP16) 38.4 69.2 81.3 90.4
DCSL [59] (IJCAI16) 44.6 73.4 82.6 91.9

DF

PIE [63] + Mirror [8] + MFA [55] (Arxiv 2016) 43.3 69.4 80.4 90.0
Fusion [63] + MFA [55] (Arxiv 2016) 54.5 84.4 92.2 96.9

Deep Metric [37] (ECCV16) 40.9 67.5 79.8 -

TCP-CNN [9] (CVPR16) 47.8 74.7 84.8 91.1
Our Method 48.7 74.7 85.1 93.0

suggest that like in other tasks, e.g., classification, training

deep neural networks from a small data is still an open and

challenging problem.

Summary. The overall performance of our approach is the

best in the category of deeply-learnt feature representation

(DF) and better than non-deep learning algorithms except

in the small dataset VIPeR. In comparison to the category

of deep learning with matching subnetwork (DMN), our ap-

proach in general is good, and performs worse than DCSL

in CUHK01 with 486 test IDs. It is reasonable as match-

ing network is more complicated than the simple Euclidean

distance in our approach. One notable advantage is that our

approach is efficient in online matching and cheap in stor-

age, while DCSL stores large feature maps of gallery im-

ages for online similarity computation, resulting in larger

storage cost and higher online computation cost.

5. Conclusions

In this paper, we present a novel part-aligned represen-

tation approach to handle the body misalignment problem.

Our formulation follows the idea of attention models and

is in a deep neural network form, which is learnt only

from person similarities without the supervision informa-

tion about the human parts. Our approach aims to partition

the human body instead of the human image box into grids

or strips, and thus is more robust to pose changes and dif-

ferent human spatial distributions in the human image box

and thus the matching is more reliable. Our approach learns

more useful body parts for person re-identification than sep-

arate body part detection. 4
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