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Abstract—Object detection performance, as measured on the canonical PASCAL VOC Challenge datasets, plateaued in the final
years of the competition. The best-performing methods were complex ensemble systems that typically combined multiple low-level
image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean
average precision (mAP) by more than 50% relative to the previous best result on VOC 2012—achieving a mAP of 62.4%. Our
approach combines two ideas: (1) one can apply high-capacity convolutional networks (CNNs) to bottom-up region proposals in order
to localize and segment objects and (2) when labeled training data are scarce, supervised pre-training for an auxiliary task, followed by
domain-specific fine-tuning, boosts performance significantly. Since we combine region proposals with CNNs, we call the resulting
model an R-CNN or Region-based Convolutional Network. Source code for the complete system is available at
http://www.cs.berkeley.edu/∼rbg/rcnn.
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1 INTRODUCTION

R ECOGNIZING objects and localizing them in images is
one of the most fundamental and challenging problems

in computer vision. There has been significant progress on
this problem over the last decade due largely to the use
of low-level image features, such as SIFT [1] and HOG
[2], in sophisticated machine learning frameworks. But if
we look at performance on the canonical visual recognition
task, PASCAL VOC object detection [3], it is generally ac-
knowledged that progress slowed from 2010 onward, with
small gains obtained by building ensemble systems and
employing minor variants of successful methods.

SIFT and HOG are semi-local orientation histograms, a
representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual
pathway. But we also know that recognition occurs several
stages downstream, which suggests that there might be
hierarchical, multi-stage processes for computing features
that are even more informative for visual recognition.

In this paper, we describe an object detection and seg-
mentation system that uses multi-layer convolutional net-
works to compute highly discriminative, yet invariant, fea-
tures. We use these features to classify image regions, which
can then be output as detected bounding boxes or pixel-level
segmentation masks. On the PASCAL detection benchmark,
our system achieves a relative improvement of more than
50% mean average precision compared to the best methods
based on low-level image features. Our approach also scales
well with the number of object categories, which is a long-
standing challenge for existing methods.
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We trace the roots of our approach to Fukushima’s
“neocognitron” [4], a hierarchical and shift-invariant model
for pattern recognition. While the basic architecture of the
neocognitron is used widely today, Fukushima’s method
had limited empirical success in part because it lacked a
supervised training algorithm. Rumelhart et al. [5] showed
that a similar architecture could be trained with supervised
error backpropagation to classify synthetic renderings of the
characters ‘T‘ and ‘C‘. Building on this work, LeCun and col-
leagues demonstrated in an influential sequence of papers
(from [6] to [7]) that stochastic gradient descent via back-
propagation was effective for training deeper networks for
challenging real-world handwritten character recognition
problems. These models are now known as convolutional
(neural) networks, CNNs, or ConvNets.

CNNs saw heavy use in the 1990s, but then fell out of
fashion with the rise of support vector machines. In 2012,
Krizhevsky et al. [8] rekindled interest in CNNs by showing
a substantial improvement in image classification accuracy
on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [9], [10]. Their success resulted from training a
large CNN on 1.2 million labeled images, together with a
few twists on CNNs from the 1990s (e.g., max(x, 0) “ReLU”
non-linearities, “dropout” regularization, and a fast GPU
implementation).

The significance of the ImageNet result was vigorously
debated during the ILSVRC 2012 workshop. The central
issue can be distilled to the following: To what extent do the
CNN classification results on ImageNet generalize to object
detection results on the PASCAL VOC Challenge?

We answered this question in a conference version of this
paper [11] by showing that a CNN can lead to dramatically
higher object detection performance on PASCAL VOC as
compared to systems based on simpler HOG-like features.
To achieve this result, we bridged the gap between image
classification and object detection by developing solutions

http://www.cs.berkeley.edu/~rbg/rcnn


2

to two problems: (1) How can we localize objects with a
deep network? and (2) How can we train a high-capacity
model with only a small quantity of annotated detection
data?

Unlike image classification, detection requires localizing
(likely many) objects within an image. One approach is to
frame detection as a regression problem. This formulation
can work well for localizing a single object, but detecting
multiple objects requires complex workarounds [12] or an
ad hoc assumption about the number of objects per image
[13]. An alternative is to build a sliding-window detector.
CNNs have been used in this way for at least two decades,
typically on constrained object categories, such as faces
[14], [15], hands [16], and pedestrians [17]. This approach
is attractive in terms of computational efficiency, however
its straightforward application requires all objects to share
a common aspect ratio. The aspect ratio problem can be
addressed with mixture models (e.g., [18]), where each
component specializes in a narrow band of aspect ratios,
or with bounding-box regression (e.g., [18], [19]).

Instead, we solve the localization problem by operating
within the “recognition using regions” paradigm [20], which
has been successful for both object detection [21] and seman-
tic segmentation [22]. At test time, our method generates
around 2000 category-independent region proposals for the
input image, extracts a fixed-length feature vector from each
proposal using a CNN, and then classifies each region with
category-specific linear SVMs. We use a simple warping
technique (anisotropic image scaling) to compute a fixed-
size CNN input from each region proposal, regardless of the
region’s shape. Fig. 1 shows an overview of a Region-based
Convolutional Network (R-CNN) and highlights some of
our results.

A second challenge faced in detection is that labeled data
are scarce and the amount currently available is insufficient
for training large CNNs from random initializations. The
conventional solution to this problem is to use unsuper-
vised pre-training, followed by supervised fine-tuning (e.g.,
[17]). The second principle contribution of this paper is
to show that supervised pre-training on a large auxiliary
dataset (ILSVRC), followed by domain-specific fine-tuning
on a small dataset (PASCAL), is an effective paradigm for
learning high-capacity CNNs when data are scarce. In our
experiments, fine-tuning for detection can improve mAP
by as much as 8 percentage points. After fine-tuning, our
system achieves a mAP of 63% on VOC 2010 compared
to 33% for the highly-tuned, HOG-based deformable part
model (DPM) [18], [23].

Our original motivation for using regions was born out
of a pragmatic research methodology: move from image
classification to object detection as simply as possible. Since
then, this design choice has proved valuable because R-
CNNs are straightforward to implement and train (com-
pared to sliding-window CNNs) and it provides a unified
solution to object detection and segmentation.

This journal paper extends our earlier work [11] in a
number of ways. First, we provide more implementation
details, rationales for design decisions, and ablation studies.
Second, we present new results on PASCAL detection using
deeper networks. Our approach is agnostic to the particular
choice of network architecture used and we show that recent
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Fig. 1. Object detection system overview. Our system (1) takes an
input image, (2) extracts around 2000 bottom-up region proposals, (3)
computes features for each proposal using a large convolutional network
(CNN), and then (4) classifies each region using class-specific linear
SVMs. We trained an R-CNN that achieves a mean average precision
(mAP) of 62.9% on PASCAL VOC 2010. For comparison, [21] reports
35.1% mAP using the same region proposals, but with a spatial pyramid
and bag-of-visual-words approach. The popular deformable part models
perform at 33.4%. On the 200-class ILSVRC2013 detection dataset,
we trained an R-CNN with a mAP of 31.4%, a large improvement over
OverFeat [19], which had the previous best result at 24.3% mAP.

work on deeper networks (e.g., [24]) translates into large
improvements in object detection. Finally, we give a head-
to-head comparison of R-CNNs with the recently proposed
OverFeat [19] detection system. OverFeat uses a sliding-
window CNN for detection and was a top-performing
method on ILSVRC2013 detection. We train an R-CNN that
significantly outperforms OverFeat, with a mAP of 31.4%
versus 24.3% on the 200-class ILSVRC2013 detection dataset.

2 RELATED WORK

Deep CNNs for object detection. There were several efforts
[12], [13], [19] to use convolutional networks for PASCAL-
style object detection concurrent with the development of
R-CNNs. Szegedy et al. [12] model object detection as a
regression problem. Given an image window, they use a
CNN to predict foreground pixels over a coarse grid for
the whole object as well as the object’s top, bottom, left
and right halves. A grouping process then converts the
predicted masks into detected bounding boxes. Szegedy et
al. train their model from a random initialization on VOC
2012 trainval and get a mAP of 30.5% on VOC 2007 test. In
comparison, an R-CNN using the same network architecture
gets a mAP of 58.5%, but uses supervised ImageNet pre-
training. One hypothesis is that [12] performs worse because
it does not use ImageNet pre-training. Recent work from
Agrawal et al. [25] shows that this is not the case; they find
that an R-CNN trained from a random initialization on VOC
2007 trainval (using the same network architecture as [12])
achieves a mAP of 40.7% on VOC 2007 test despite using
half the amount of training data as [12].

Scalability and speed. In addition to being accurate, it’s
important for object detection systems to scale well as the
number of object categories increases. Significant effort has
gone into making methods like DPM [18] scale to thou-
sands of object categories. For example, Dean et al. [26]
replace exact filter convolutions in DPM with hashtable
lookups. They show that with this technique it’s possible
to run 10k DPM detectors in about 5 minutes per image
on a desktop workstation. However, there is an unfortunate
tradeoff. When a large number of DPM detectors compete,
the approximate hashing approach causes a substantial loss
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in detection accuracy. R-CNNs, in contrast, scale very well
with the number of object classes to detect because nearly
all computation is shared between all object categories.
The only class-specific computations are a reasonably small
matrix-vector product and greedy non-maximum suppres-
sion. Although these computations scale linearly with the
number of categories, the scale factor is small. Measured
empirically, it takes only 30ms longer to detect 200 classes
than 20 classes on a CPU, without any approximations. This
makes it feasible to rapidly detect tens of thousands of object
categories without any modifications to the core algorithm.

Despite this graceful scaling behavior, an R-CNN can
take 10 to 45 seconds per image on a GPU, depending on
the network used, since each region is passed through the
network independently. Recent work from He et al. [27]
(“SPPnet”) improves R-CNN efficiency by sharing compu-
tation through a feature pyramid, allowing for detection
at a few frames per second. Building on SPPnet, Girshick
[28] shows that it’s possible to further reduce training and
testing times, while improving detection accuracy and sim-
plifying the training process, using an approach called “Fast
R-CNN.” Fast R-CNN reduces testing times to 50 to 300ms
per image, depending on network architecture.

Localization methods. The dominant approach to object
detection has been based on sliding-window detectors. This
approach goes back (at least) to early face detectors [15],
and continued with HOG-based pedestrian detection [2],
and part-based generic object detection [18]. An alternative
is to first compute a pool of (likely overlapping) image
regions, each one serving as a candidate object, and then
to filter these candidates in a way that aims to retain only
the true objects. Multiple segmentation hypotheses were
used by Hoiem et al. [29] to estimate the rough geometric
scene structure and by Russell et al. [30] to automatically
discover object classes in a set of images. The “selective
search” algorithm of van de Sande et al. [21] popularized
the multiple segmentation approach for object detection by
showing strong results on PASCAL object detection. Our
approach was inspired by the success of selective search.

Object proposal generation is now an active research
area. EdgeBoxes [31] outputs high-quality rectangular (box)
proposals quickly (∼0.3s per image). BING [32] generates
box proposals at ∼3ms per image, however it has subse-
quently been shown that the proposal quality is too poor to
be useful in R-CNN [33]. Other methods focus on pixel-wise
segmentation, producing regions instead of boxes. These
approaches include RIGOR [34] and MCG [35], which take
10 to 30s per image and GOP [36], a faster methods that
takes∼1s per image. For a more in-depth survey of proposal
algorithms, Hosang et al. [33] provide an insightful meta-
evaluation of recent methods.

Transfer learning. R-CNN training is based on inductive
transfer learning, using the taxonomy of Pan and Yang [37].
To train an R-CNN, we typically start with ImageNet classi-
fication as a source task and dataset, train a network using
supervision, and then transfer that network to the target
task and dataset using supervised fine-tuning. This method
is related to traditional multi-task learning [38], [39], except
that we train for the tasks sequentially and are ultimately
only interested in performing well on the target task.

This strategy is different from the dominant paradigm
in recent neural network literature of unsupervised tranfer
learning (see [40] for a survey covering unsupervised pre-
training and represetation learning more generally). Su-
pervised transfer learning using CNNs, but without fine-
funing, was also investigated in concurrent work by Don-
ahue et al. [41]. They show that Krizhevsky et al.’s CNN,
once trained on ImageNet, can be used as a blackbox feature
extractor, yielding excellent performing on several recogni-
tion tasks including scene classification, fine-grained sub-
categorization, and domain adaptation. Hoffman et al. [42]
show how transfer learning can be used to train R-CNNs for
classes that have image-level labels, but no bounding-box
training data. Their approach is based on modeling the task
shift from image classification to object detection and then
transfering that knowledge to classes that have no detection
training data.

R-CNN extensions. Since their introduction, R-CNNs have
been extended to a variety of new tasks and datasets. Karpa-
thy et al. [43] learn a model for bi-directional image and sen-
tence retrieval. Their image representation is derived from
an R-CNN trained to detect 200 classes on the ILSVRC2013
detection dataset. Gkioxari et al. [44] use multi-task learning
to train R-CNNs for person detection, 2D pose estimation,
and action recognition. Hariharan et al. [45] propose a uni-
fication of the object detection and semantic segmentation
tasks, termed “simultaneous detection and segmentation”
(SDS), and train a two-column R-CNN for this task. They
show that a single region proposal algorithm (MCG [35]) can
be used effectively for traditional bounding-box detection as
well as semantic segmentation. Their PASCAL segmentation
results improve significantly on the ones reported in this
paper. Gupta et al. [46] extend R-CNNs to object detection in
depth images. They show that a well-designed input signal,
where the depth map is augmented with height above
ground and local surface orientation with respect to gravity,
allows training an R-CNN that outperforms existing RGB-D
object detection baselines. Song et al. [47] train an R-CNN
using weak, image-level supervision by mining for positive
training examples using a submodular cover algorithm and
then training a latent SVM.

Many systems based on, or implementing, R-CNNs were
used in the recent ILSVRC2014 object detection challenge
[48], resulting in substantial improvements in detection
accuracy. In particular, the winning method, GoogLeNet
[49], [50], uses an innovative network design in an R-CNN.
With a single network (and a slightly simpler pipeline that
excludes SVM training and bounding-box regression), they
improve R-CNN performance to 38.0% mAP from a basline
of 34.5%. They also show that an ensemble of six networks
improves their result to 43.9% mAP.

3 OBJECT DETECTION WITH AN R-CNN
Our object detection system consists of three modules.
The first generates category-independent region proposals.
These proposals define the set of candidate detections avail-
able to our detector. The second module is a convolutional
network that extracts a fixed-length feature vector from each
region. The third module is a set of class-specific linear
SVMs. In this section, we present our design decisions for
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Fig. 2. Warped training samples from VOC 2007 train.

each module, describe their test-time usage, detail how
their parameters are learned, and show detection results on
PASCAL VOC 2010-12 and ILSVRC2013.

3.1 Module design

3.1.1 Region proposals

A variety of recent papers offer methods for generating
category-independent region proposals. Examples include:
objectness [51], selective search [21], category-independent
object proposals [52], constrained parametric min-cuts
(CPMC) [22], multi-scale combinatorial grouping [35], and
Cireşan et al. [53], who detect mitotic cells by applying a
CNN to regularly-spaced square crops, which are a special
case of region proposals. While R-CNN is agnostic to the
particular region proposal method, we use selective search
to enable a controlled comparison with prior detection work
(e.g., [21], [54]).

3.1.2 Feature extraction

We extract a fixed-length feature vector from each region
proposal using a CNN. The particular CNN architecture
used is a system hyperparameter. Most of our experiments
use the Caffe [55] implementation of the CNN described by
Krizhevsky et al. [8] (TorontoNet), however we have also ex-
perimented with the 16-layer deep network from Simonyan
and Zisserman [24] (OxfordNet). In both cases, the feature
vectors are 4096-dimensional. Features are computed by
forward propagating a mean-subtracted S × S RGB image
through the network and reading off the values output by
the penultimate layer (the layer just before the softmax
classifier). For TorontoNet, S = 227 and for OxfordNet
S = 224. We refer readers to [8], [24], [55] for more network
architecture details.

In order to compute features for a region proposal, we
must first convert the image data in that region into a form
that is compatible with the CNN (its architecture requires
inputs of a fixed S × S pixel size).1 Of the many possible
transformations of our arbitrary-shaped regions, we opt for
the simplest. Regardless of the size or aspect ratio of the
candidate region, we warp all pixels in a tight bounding box
around it to the required size. Prior to warping, we dilate
the tight bounding box so that at the warped size there are
exactly p pixels of warped image context around the original
box (we use p = 16). Fig. 2 shows a random sampling
of warped training regions. Alternatives to warping are
discussed in Section 7.1.

1. Of course the entire network can be run convolutionally, which
enables handling arbitrary input sizes, however then the output size
is no longer a fixed-length vector. The output can be converted to a
fixed-length through another transformation, such as in [27].

3.2 Test-time detection

At test time, we run selective search on the test image
to extract around 2000 region proposals (we use selective
search’s “fast mode” in all experiments). We warp each pro-
posal and forward propagate it through the CNN in order
to compute features. Then, for each class, we score each
extracted feature vector using the SVM trained for that class.
Given all scored regions in an image, we apply a greedy
non-maximum suppression (for each class independently)
that rejects a region if it has an intersection-over-union (IoU)
overlap with a higher scoring selected region larger than a
learned threshold.

3.2.1 Run-time analysis

Two properties make detection efficient. First, all CNN pa-
rameters are shared across all categories. Second, the feature
vectors computed by the CNN are low-dimensional when
compared to other common approaches, such as spatial
pyramids with bag-of-visual-word encodings. The features
used in the UVA detection system [21], for example, are
two orders of magnitude larger than ours (360k vs. 4k-
dimensional).

The result of such sharing is that the time spent comput-
ing region proposals and features (10s/image on an NVIDIA
Titan Black GPU or 53s/image on a CPU, using Toron-
toNet) is amortized over all classes. The only class-specific
computations are dot products between features and SVM
weights and non-maximum suppression. In practice, all dot
products for an image are batched into a single matrix-
matrix product. The feature matrix is typically 2000 × 4096
and the SVM weight matrix is 4096 × N , where N is the
number of classes.

This analysis shows that R-CNNs can scale to thou-
sands of object classes without resorting to approximate
techniques, such as hashing. Even if there were 100k classes,
the resulting matrix multiplication takes only 10 seconds on
a modern multi-core CPU. This efficiency is not merely the
result of using region proposals and shared features. The
UVA system, due to its high-dimensional features, would
be two orders of magnitude slower while requiring 134GB
of memory just to store 100k linear predictors, compared to
just 1.5GB for our lower-dimensional features.

It is also interesting to contrast R-CNNs with the recent
work from Dean et al. on scalable detection using DPMs
and hashing [56]. They report a mAP of around 16% on
VOC 2007 at a run-time of 5 minutes per image when
introducing 10k distractor classes. With our approach, 10k
detectors can run in about a minute on a CPU, and because
no approximations are made mAP would remain at 59%
with TorontoNet and 66% with OxfordNet (Section 4.2).

3.3 Training

3.3.1 Supervised pre-training

We discriminatively pre-trained the CNN on a large auxil-
iary dataset (ILSVRC2012 classification) using image-level an-
notations only (bounding-box labels are not available for this
data). Pre-training was performed using the open source
Caffe CNN library [55].
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3.3.2 Domain-specific fine-tuning
To adapt the CNN to the new task (detection) and the new
domain (warped proposal windows), we continue stochastic
gradient descent (SGD) training of the CNN parameters
using only warped region proposals. Aside from replacing
the CNN’s ImageNet-specific 1000-way classification layer
with a randomly initialized (N + 1)-way classification layer
(where N is the number of object classes, plus 1 for back-
ground), the CNN architecture is unchanged. For VOC,
N = 20 and for ILSVRC2013, N = 200. We treat all region
proposals with ≥ 0.5 IoU overlap with a ground-truth box
as positives for that box’s class and the rest as negatives. We
start SGD at a learning rate of 0.001 (1/10th of the initial pre-
training rate), which allows fine-tuning to make progress
while not clobbering the initialization. In each SGD iteration,
we uniformly sample 32 positive windows (over all classes)
and 96 background windows to construct a mini-batch of
size 128. We bias the sampling towards positive windows
because they are extremely rare compared to background.
OxfordNet requires more memory than TorontoNet making
it necessary to decrease the minibatch size in order to fit on
a single GPU. We decreased the batch size from 128 to just
24 while maintaining the same biased sampling scheme.

3.3.3 Object category classifiers
Consider training a binary classifier to detect cars. It’s clear
that an image region tightly enclosing a car should be a pos-
itive example. Similarly, it’s clear that a background region,
which has nothing to do with cars, should be a negative
example. Less clear is how to label a region that partially
overlaps a car. We resolve this issue with an IoU overlap
threshold, below which regions are defined as negatives.
The overlap threshold, 0.3, was selected by a grid search
over {0, 0.1, . . . , 0.5} on a validation set. We found that
selecting this threshold carefully is important. Setting it to
0.5, as in [21], decreased mAP by 5 points. Similarly, setting
it to 0 decreased mAP by 4 points. Positive examples are
defined simply to be the ground-truth bounding boxes for
each class.

Once features are extracted and training labels are ap-
plied, we optimize one linear SVM per class. Since the
training data are too large to fit in memory, we adopt the
standard hard negative mining method [18], [58]. Hard
negative mining converges quickly and in practice mAP
stops increasing after only a single pass over all images.

In Section 7.2 we discuss why the positive and negative
examples are defined differently in fine-tuning versus SVM
training. We also discuss the trade-offs involved in training
detection SVMs rather than simply using the outputs from
the final softmax layer of the fine-tuned CNN.

3.4 Results on PASCAL VOC 2010-12
Following the PASCAL VOC best practices [3], we validated
all design decisions and hyperparameters on the VOC 2007
dataset (Section 4.2). For final results on the VOC 2010-12
datasets, we fine-tuned the CNN on VOC 2012 train and
optimized our detection SVMs on VOC 2012 trainval. We
submitted test results to the evaluation server only once for
each of the two major algorithm variants (with and without
bounding-box regression).

Table 1 shows complete results on VOC 2010.2 We com-
pare our method against four strong baselines, including
SegDPM [57], which combines DPM detectors with the out-
put of a semantic segmentation system [59] and uses addi-
tional inter-detector context and image-classifier rescoring.
The most germane comparison is to the UVA system from
Uijlings et al. [21], since our systems use the same region
proposal algorithm. To classify regions, their method builds
a four-level spatial pyramid and populates it with densely
sampled SIFT, Extended OpponentSIFT, and RGB-SIFT de-
scriptors, each vector quantized with 4000-word codebooks.
Classification is performed with a histogram intersection
kernel SVM. Compared to their multi-feature, non-linear
kernel SVM approach, we achieve a large improvement in
mAP, from 35.1% to 53.7% mAP with TorontoNet and 62.9%
with OxfordNet, while also being much faster. R-CNNs
achieve similar performance (53.3% / 62.4% mAP) on VOC
2012 test.

3.5 Results on ILSVRC2013 detection

We ran an R-CNN on the 200-class ILSVRC2013 detection
dataset using the same system hyperparameters that we
used for PASCAL VOC. We followed the same protocol
of submitting test results to the ILSVRC2013 evaluation
server only twice, once with and once without bounding-
box regression.

Fig. 3 compares our R-CNN to the entries in the ILSVRC
2013 competition and to the post-competition OverFeat re-
sult [19]. Using TorontoNet, our R-CNN achieves a mAP
of 31.4%, which is significantly ahead of the second-best
result of 24.3% from OverFeat. To give a sense of the AP
distribution over classes, box plots are also presented. Most
of the competing submissions (OverFeat, NEC-MU, Toronto
A, and UIUC-IFP) used convolutional networks, indicating
that there is significant nuance in how CNNs can be applied
to object detection, leading to greatly varying outcomes. No-
tably, UvA-Euvision’s entry did not CNNs and was based
on a fast VLAD encoding [60].

In Section 5, we give an overview of the ILSVRC2013
detection dataset and provide details about choices that we
made when training R-CNNs on it.

4 ANALYSIS

4.1 Visualizing learned features

First-layer filters can be visualized directly and are easy
to understand [8]. They capture oriented edges and oppo-
nent colors. Understanding the subsequent layers is more
challenging. Zeiler and Fergus present a visually attractive
deconvolutional approach in [63]. We propose a simple
(and complementary) non-parametric method that directly
shows what the network learned.

The idea is to single out a particular unit (feature) in the
network and use it as if it were an object detector in its own
right. That is, we compute the unit’s activations on a large
set of held-out region proposals (about 10 million), sort the

2. We use VOC 2010 because there are more published results com-
pared to 2012. Additionally, VOC 2010, 2011, 2012 are very similar
datasets, with 2011 and 2012 being identical (for the detection task).
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TABLE 1
Detection average precision (%) on VOC 2010 test. T-Net stands for TorontoNet and O-Net for OxfordNet (Section 3.1.2). R-CNNs are most

directly comparable to UVA and Regionlets since all methods use selective search region proposals. Bounding-box regression (BB) is described in
Section 7.3. At publication time, SegDPM was the top-performer on the PASCAL VOC leaderboard. DPM and SegDPM use context rescoring not

used by the other methods. SegDPM and all R-CNNs use additional training data.

VOC 2010 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
DPM v5 [23] 49.2 53.8 13.1 15.3 35.5 53.4 49.7 27.0 17.2 28.8 14.7 17.8 46.4 51.2 47.7 10.8 34.2 20.7 43.8 38.3 33.4
UVA [21] 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1
Regionlets [54] 65.0 48.9 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7
SegDPM [57] 61.4 53.4 25.6 25.2 35.5 51.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47.1 14.8 38.7 35.0 52.8 43.1 40.4
R-CNN T-Net 67.1 64.1 46.7 32.0 30.5 56.4 57.2 65.9 27.0 47.3 40.9 66.6 57.8 65.9 53.6 26.7 56.5 38.1 52.8 50.2 50.2
R-CNN T-Net BB 71.8 65.8 53.0 36.8 35.9 59.7 60.0 69.9 27.9 50.6 41.4 70.0 62.0 69.0 58.1 29.5 59.4 39.3 61.2 52.4 53.7
R-CNN O-Net 76.5 70.4 58.0 40.2 39.6 61.8 63.7 81.0 36.2 64.5 45.7 80.5 71.9 74.3 60.6 31.5 64.7 52.5 64.6 57.2 59.8
R-CNN O-Net BB 79.3 72.4 63.1 44.0 44.4 64.6 66.3 84.9 38.8 67.3 48.4 82.3 75.0 76.7 65.7 35.8 66.2 54.8 69.1 58.8 62.9
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Fig. 3. (Left) Mean average precision on the ILSVRC2013 detection test set. Methods preceeded by * use outside training data (images and labels
from the ILSVRC classification dataset in all cases). (Right) Box plots for the 200 average precision values per method. A box plot for the post-
competition OverFeat result is not shown because per-class APs are not yet available. The red line marks the median AP, the box bottom and top
are the 25th and 75th percentiles. The whiskers extend to the min and max AP of each method. Each AP is plotted as a green dot over the whiskers
(best viewed digitally with zoom).
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Fig. 4. Top regions for six pool5 units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts, such as people
(row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).

proposals from highest to lowest activation, perform non-
maximum suppression, and then display the top-scoring
regions. Our method lets the selected unit “speak for itself”

by showing exactly which inputs it fires on. We avoid
averaging in order to see different visual modes and gain
insight into the invariances computed by the unit.
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TABLE 2
Detection average precision (%) on VOC 2007 test. Rows 1-3 show R-CNN performance without fine-tuning. Rows 4-6 show results for the CNN
pre-trained on ILSVRC 2012 and then fine-tuned (FT) on VOC 2007 trainval. Row 7 includes a simple bounding-box regression (BB) stage that

reduces localization errors (Section 7.3). Rows 8-10 present DPM methods as a strong baseline. The first uses only HOG, while the next two use
different feature learning approaches to augment or replace HOG. All R-CNN results use TorontoNet.

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
R-CNN pool5 51.8 60.2 36.4 27.8 23.2 52.8 60.6 49.2 18.3 47.8 44.3 40.8 56.6 58.7 42.4 23.4 46.1 36.7 51.3 55.7 44.2
R-CNN fc6 59.3 61.8 43.1 34.0 25.1 53.1 60.6 52.8 21.7 47.8 42.7 47.8 52.5 58.5 44.6 25.6 48.3 34.0 53.1 58.0 46.2
R-CNN fc7 57.6 57.9 38.5 31.8 23.7 51.2 58.9 51.4 20.0 50.5 40.9 46.0 51.6 55.9 43.3 23.3 48.1 35.3 51.0 57.4 44.7
R-CNN FT pool5 58.2 63.3 37.9 27.6 26.1 54.1 66.9 51.4 26.7 55.5 43.4 43.1 57.7 59.0 45.8 28.1 50.8 40.6 53.1 56.4 47.3
R-CNN FT fc6 63.5 66.0 47.9 37.7 29.9 62.5 70.2 60.2 32.0 57.9 47.0 53.5 60.1 64.2 52.2 31.3 55.0 50.0 57.7 63.0 53.1
R-CNN FT fc7 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2
R-CNN FT fc7 BB 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

DPM v5 [23] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7
DPM ST [61] 23.8 58.2 10.5 8.5 27.1 50.4 52.0 7.3 19.2 22.8 18.1 8.0 55.9 44.8 32.4 13.3 15.9 22.8 46.2 44.9 29.1
DPM HSC [62] 32.2 58.3 11.5 16.3 30.6 49.9 54.8 23.5 21.5 27.7 34.0 13.7 58.1 51.6 39.9 12.4 23.5 34.4 47.4 45.2 34.3

TABLE 3
Detection average precision (%) on VOC 2007 test for two different CNN architectures. The first two rows are results from Table 2 using Krizhevsky

et al.’s TorontoNet architecture (T-Net). Rows three and four use the recently proposed 16-layer OxfordNet architecture (O-Net) from Simonyan
and Zisserman [24].

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
R-CNN T-Net 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2
R-CNN T-Net BB 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5
R-CNN O-Net 71.6 73.5 58.1 42.2 39.4 70.7 76.0 74.5 38.7 71.0 56.9 74.5 67.9 69.6 59.3 35.7 62.1 64.0 66.5 71.2 62.2
R-CNN O-Net BB 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

We visualize units from layer pool5 of a TorontoNet,
which is the max-pooled output of the network’s fifth
and final convolutional layer. The pool5 feature map is
6× 6× 256 = 9216-dimensional. Ignoring boundary effects,
each pool5 unit has a receptive field of 195 × 195 pixels in
the original 227 × 227 pixel input. A central pool5 unit has
a nearly global view, while one near the edge has a smaller,
clipped support.

Each row in Fig. 4 displays the top 16 activations for a
pool5 unit from a CNN that we fine-tuned on VOC 2007
trainval. Six of the 256 functionally unique units are visu-
alized. These units were selected to show a representative
sample of what the network learns. In the second row,
we see a unit that fires on dog faces and dot arrays. The
unit corresponding to the third row is a red blob detector.
There are also detectors for human faces and more abstract
patterns such as text and triangular structures with win-
dows. The network appears to learn a representation that
combines a small number of class-tuned features together
with a distributed representation of shape, texture, color,
and material properties. The subsequent fully connected
layer fc6 has the ability to model a large set of compositions
of these rich features. Agrawal et al. [25] provide a more
in-depth analysis of the learned features.

4.2 Ablation studies
4.2.1 Performance layer-by-layer, without fine-tuning
To understand which layers are critical for detection per-
formance, we analyzed results on the VOC 2007 dataset
for each of the TorontoNet’s last three layers. Layer pool5
was briefly described in Section 4.1. The final two layers are
summarized below.

Layer fc6 is fully connected to pool5. To compute fea-
tures, it multiplies a 4096×9216 weight matrix by the pool5

feature map (reshaped as a 9216-dimensional vector) and
then adds a vector of biases. This intermediate vector is
component-wise half-wave rectified (x← max(0, x)).

Layer fc7 is the final layer of the network. It is imple-
mented by multiplying the features computed by fc6 by a
4096× 4096 weight matrix, and similarly adding a vector of
biases and applying half-wave rectification.

We start by looking at results from the CNN without
fine-tuning on PASCAL, i.e. all CNN parameters were pre-
trained on ILSVRC 2012 only. Analyzing performance layer-
by-layer (Table 2 rows 1-3) reveals that features from fc7
generalize worse than features from fc6. This means that
29%, or about 16.8 million, of the CNN’s parameters can
be removed without degrading mAP. More surprising is
that removing both fc7 and fc6 produces quite good results
even though pool5 features are computed using only 6% of
the CNN’s parameters. Much of the CNN’s representational
power comes from its convolutional layers, rather than
from the much larger densely connected layers. This finding
suggests potential utility in computing a dense feature map,
in the sense of HOG, of an arbitrary-sized image by using
only the convolutional layers of the CNN. This represen-
tation would enable experimentation with sliding-window
detectors, including DPM, on top of pool5 features.

4.2.2 Performance layer-by-layer, with fine-tuning

We now look at results from our CNN after having fine-
tuned its parameters on VOC 2007 trainval. The improve-
ment is striking (Table 2 rows 4-6): fine-tuning increases
mAP by 8.0 percentage points to 54.2%. The boost from fine-
tuning is much larger for fc6 and fc7 than for pool5, which
suggests that the pool5 features learned from ImageNet
are general and that most of the improvement is gained
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from learning domain-specific non-linear classifiers on top
of them.

4.2.3 Comparison to recent feature learning methods
Relatively few feature learning methods have been tried on
PASCAL VOC detection. We look at two recent approaches
that build on deformable part models. For reference, we also
include results for the standard HOG-based DPM [23].

The first DPM feature learning method, DPM ST [61],
augments HOG features with histograms of “sketch token”
probabilities. Intuitively, a sketch token is a tight distribu-
tion of contours passing through the center of an image
patch. Sketch token probabilities are computed at each pixel
by a random forest that was trained to classify 35× 35 pixel
patches into one of 150 sketch tokens or background.

The second method, DPM HSC [62], replaces HOG with
histograms of sparse codes (HSC). To compute an HSC,
sparse code activations are solved for at each pixel using
a learned dictionary of 100 7 × 7 pixel (grayscale) atoms.
The resulting activations are rectified in three ways (full and
both half-waves), spatially pooled, unit `2 normalized, and
then power transformed (x← sign(x)|x|α).

All R-CNN variants strongly outperform the three DPM
baselines (Table 2 rows 8-10), including the two that use
feature learning. Compared to the latest version of DPM,
which uses only HOG features, our mAP is more than
20 percentage points higher: 54.2% vs. 33.7%—a 61% rel-
ative improvement. The combination of HOG and sketch
tokens yields 2.5 mAP points over HOG alone, while HSC
improves over HOG by 4 mAP points (when compared
internally to their private DPM baselines—both use non-
public implementations of DPM that underperform the
open source version [23]). These methods achieve mAPs of
29.1% and 34.3%, respectively.

4.3 Network architectures

Most results in this paper use the TorontoNet network
architecture from Krizhevsky et al. [8]. However, we have
found that the choice of architecture has a large effect on R-
CNN detection performance. In Table 3, we show results on
VOC 2007 test using the 16-layer deep OxfordNet recently
proposed by Simonyan and Zisserman [24]. This network
was one of the top performers in the recent ILSVRC 2014
classification challenge. The network has a homogeneous
structure consisting of 13 layers of 3×3 convolution kernels,
with five max pooling layers interspersed, and topped with
three fully-connected layers.

To use OxfordNet in an R-CNN, we downloaded the
publicly available pre-trained network weights for the
VGG_ILSVRC_16_layers model from the Caffe Model
Zoo.3 We then fine-tuned the network using the same pro-
tocol as we used for TorontoNet. The only difference was to
use smaller minibatches (24 examples) as required in order
to fit within GPU memory. The results in Table 3 show
that an R-CNN with OxfordNet substantially outperforms
an R-CNN with TorontoNet, increasing mAP from 58.5% to
66.0%. However there is a considerable drawback in terms
of compute time, with the forward pass of OxfordNet taking

3. https://github.com/BVLC/caffe/wiki/Model-Zoo

roughly 7 times longer than TorontoNet. From a transfer
learning point of view, it is very encouraging that large
improvements in image classification translate directly into
large improvements in object detection.

4.4 Detection error analysis
We applied the excellent detection analysis tool from Hoiem
et al. [64] in order to reveal our method’s error modes,
understand how fine-tuning changes them, and to see how
our error types compare with DPM. A full summary of
the analysis tool is beyond the scope of this paper and we
encourage readers to consult [64] to understand some finer
details (such as “normalized AP”). Since the analysis is best
absorbed in the context of the associated plots, we present
the discussion within the captions of Fig. 5 and Fig. 6.
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Fig. 5. Distribution of top-ranked false positive (FP) types for R-CNNs
with TorontoNet. Each plot shows the evolving distribution of FP types
as more FPs are considered in order of decreasing score. Each FP
is categorized into 1 of 4 types: Loc—poor localization (a detection
with an IoU overlap with the correct class between 0.1 and 0.5, or a
duplicate); Sim—confusion with a similar category; Oth—confusion with
a dissimilar object category; BG—a FP that fired on background. Com-
pared with DPM (see [64]), significantly more of our errors result from
poor localization, rather than confusion with background or other object
classes, indicating that the CNN features are much more discriminative
than HOG. Loose localization likely results from our use of bottom-up
region proposals and the positional invariance learned from pre-training
the CNN for whole-image classification. Column three shows how our
simple bounding-box regression method fixes many localization errors.

4.5 Bounding-box regression
Based on the error analysis, we implemented a sim-
ple method to reduce localization errors. Inspired by the
bounding-box regression employed in DPM [18], we train a
linear regression model to predict a new detection window
given the pool5 features for a selective search region pro-
posal. Full details are given in Section 7.3. Results in Table 1,
Table 2, and Fig. 5 show that this simple approach fixes a
large number of mislocalized detections, boosting mAP by
3 to 4 points.

4.6 Qualitative results
Qualitative detection results on ILSVRC2013 are presented
in Fig. 8. Each image was sampled randomly from the val2

https://github.com/BVLC/caffe/wiki/Model-Zoo
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Fig. 6. Sensitivity to object characteristics. Each plot shows the mean (over classes) normalized AP (see [64]) for the highest and lowest performing
subsets within six different object characteristics (occlusion, truncation, bounding-box area, aspect ratio, viewpoint, part visibility). For example,
bounding-box area comprises the subsets extra-small, small, ..., extra-large. We show plots for our method (R-CNN) with and without fine-tuning
(FT) and bounding-box regression (BB) as well as for DPM voc-release5. Overall, fine-tuning does not reduce sensitivity (the difference between
max and min), but does substantially improve both the highest and lowest performing subsets for nearly all characteristics. This indicates that
fine-tuning does more than simply improve the lowest performing subsets for aspect ratio and bounding-box area, as one might conjecture based
on how we warp network inputs. Instead, fine-tuning improves robustness for all characteristics including occlusion, truncation, viewpoint, and part
visibility.

set and all detections from all detectors with a precision
greater than 0.5 are shown. Note that these are not curated
and give a realistic impression of the detectors in action.

5 THE ILSVRC2013 DETECTION DATASET

In Section 3 we presented results on the ILSVRC2013 detec-
tion dataset. This dataset is less homogeneous than PASCAL
VOC, requiring choices about how to use it. Since these
decisions are non-trivial, we cover them in this section. The
methodology and “val1” and “val2” data splits introduced
in this section were used widely by participants in the
ILSVRC2014 detection challenge.

5.1 Dataset overview

The ILSVRC2013 detection dataset is split into three sets:
train (395,918), val (20,121), and test (40,152), where the
number of images in each set is in parentheses. The val
and test splits are drawn from the same image distribu-
tion. These images are scene-like and similar in complexity
(number of objects, amount of clutter, pose variability, etc.)
to PASCAL VOC images. The val and test splits are exhaus-
tively annotated, meaning that in each image all instances
from all 200 classes are labeled with bounding boxes. The
train set, in contrast, is drawn from the ILSVRC2013 classifi-
cation image distribution. These images have more variable
complexity with a skew towards images of a single centered
object. Unlike val and test, the train images (due to their
large number) are not exhaustively annotated. In any given
train image, instances from the 200 classes may or may not
be labeled. In addition to these image sets, each class has an
extra set of negative images. Negative images are manually
checked to validate that they do not contain any instances
of their associated class. The negative image sets were not
used in this work. More information on how ILSVRC was
collected and annotated can be found in [65], [66].

The nature of these splits presents a number of choices
for training an R-CNN. The train images cannot be used for
hard negative mining, because annotations are not exhaus-
tive. Where should negative examples come from? Also,
the train images have different statistics than val and test.
Should the train images be used at all, and if so, to what
extent? While we have not thoroughly evaluated a large

number of choices, we present what seemed like the most
obvious path based on previous experience.

Our general strategy is to rely heavily on the val set
and use some of the train images as an auxiliary source
of positive examples. To use val for both training and
validation, we split it into roughly equally sized “val1” and
“val2” sets. Since some classes have very few examples in
val (the smallest has only 31 and half have fewer than 110),
it is important to produce an approximately class-balanced
partition. To do this, a large number of candidate splits
were generated and the one with the smallest maximum
relative class imbalance was selected.4 Each candidate split
was generated by clustering val images using their class
counts as features, followed by a randomized local search
that may improve the split balance. The particular split used
here has a maximum relative imbalance of about 11% and
a median relative imbalance of 4%. The val1/val2 split and
code used to produce them are publicly available in the R-
CNN code repository, allowing other researchers to compare
their methods on the val splits used in this report.

5.2 Region proposals
We followed the same region proposal approach that was
used for detection on PASCAL. Selective search [21] was
run in “fast mode” on each image in val1, val2, and test
(but not on images in train). One minor modification was
required to deal with the fact that selective search is not scale
invariant and so the number of regions produced depends
on the image resolution. ILSVRC image sizes range from
very small to a few that are several mega-pixels, and so
we resized each image to a fixed width (500 pixels) before
running selective search. On val, selective search resulted
in an average of 2403 region proposals per image with a
91.6% recall of all ground-truth bounding boxes (at 0.5 IoU
threshold). This recall is notably lower than in PASCAL,
where it is approximately 98%, indicating significant room
for improvement in the region proposal stage.

5.3 Training data
For training data, we formed a set of images and boxes that
includes all selective search and ground-truth boxes from

4. Relative imbalance is measured as |a − b|/(a + b) where a and b
are class counts in each half of the split.
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val1 together with up to N ground-truth boxes per class
from train (if a class has fewer than N ground-truth boxes
in train, then we take all of them). We’ll call this dataset
of images and boxes val1+trainN . In an ablation study, we
show mAP on val2 for N ∈ {0, 500, 1000} (Section 5.5).

Training data are required for three procedures in R-
CNN: (1) CNN fine-tuning, (2) detector SVM training, and
(3) bounding-box regressor training. CNN fine-tuning was
run for 50k SGD iteration on val1+trainN using the exact
same settings as were used for PASCAL. Fine-tuning on
a single NVIDIA Tesla K20 took 13 hours using Caffe.
For SVM training, all ground-truth boxes from val1+trainN
were used as positive examples for their respective classes.
Hard negative mining was performed on a randomly se-
lected subset of 5000 images from val1. An initial experiment
indicated that mining negatives from all of val1, versus a
5000 image subset (roughly half of it), resulted in only a 0.5
percentage point drop in mAP, while cutting SVM training
time in half. No negative examples were taken from train
because the annotations are not exhaustive. The extra sets of
verified negative images were not used. The bounding-box
regressors were trained on val1.

5.4 Validation and evaluation

Before submitting results to the evaluation server, we val-
idated data usage choices and the effect of fine-tuning
and bounding-box regression on the val2 set using the
training data described above. All system hyperparameters
(e.g., SVM C hyperparameters, padding used in region
warping, NMS thresholds, bounding-box regression hyper-
parameters) were fixed at the same values used for PAS-
CAL. Undoubtedly some of these hyperparameter choices
are slightly suboptimal for ILSVRC, however the goal of
this work was to produce a preliminary R-CNN result on
ILSVRC without extensive dataset tuning. After selecting
the best choices on val2, we submitted exactly two result
files to the ILSVRC2013 evaluation server. The first submis-
sion was without bounding-box regression and the second
submission was with bounding-box regression. For these
submissions, we expanded the SVM and bounding-box re-
gressor training sets to use val+train1k and val, respectively.
We used the CNN that was fine-tuned on val1+train1k to
avoid re-running fine-tuning and feature computation.

5.5 Ablation study

Table 4 shows an ablation study of the effects of different
amounts of training data, fine-tuning, and bounding-box
regression. A first observation is that mAP on val2 matches
mAP on test very closely. This gives us confidence that
mAP on val2 is a good indicator of test set performance.
The first result, 20.9%, is what R-CNN achieves using a
CNN pre-trained on the ILSVRC2012 classification dataset
(no fine-tuning) and given access to the small amount of
training data in val1 (recall that half of the classes in val1
have between 15 and 55 examples). Expanding the training
set to val1+trainN improves performance to 24.1%, with
essentially no difference between N = 500 and N = 1000.
Fine-tuning the CNN using examples from just val1 gives
a modest improvement to 26.5%, however there is likely

significant overfitting due to the small number of posi-
tive training examples. Expanding the fine-tuning set to
val1+train1k, which adds up to 1000 positive examples per
class from the train set, helps significantly, boosting mAP to
29.7%. Bounding-box regression improves results to 31.0%,
which is a smaller relative gain that what was observed in
PASCAL.

5.6 Relationship to OverFeat
There is an interesting relationship between R-CNN and
OverFeat: OverFeat can be seen (roughly) as a special case
of an R-CNN. If one were to replace selective search region
proposals with a multi-scale pyramid of regular square
regions and change the per-class bounding-box regressors
to a single bounding-box regressor, then the systems would
be very similar (modulo some potentially significant differ-
ences in how they are trained: CNN detection fine-tuning,
using SVMs, etc.). It is worth noting that OverFeat has a
significant speed advantage over R-CNN: it is about 9x
faster, based on a figure of 2 seconds per image quoted from
[19]. This speed comes from the fact that OverFeat’s sliding
windows (i.e., region proposals) are not warped at the
image level and therefore computation can be easily shared
between overlapping windows. Sharing is implemented by
running the entire network in a convolutional fashion over
arbitrary-sized inputs. OverFeat is slower than the pyramid-
based version of R-CNN from He et al. [27].

6 SEMANTIC SEGMENTATION

Region classification is a standard technique for semantic
segmentation, allowing us to easily apply R-CNNs to the
PASCAL VOC segmentation challenge. To facilitate a direct
comparison with the current leading semantic segmenta-
tion system (called O2P for “second-order pooling”) [59],
we work within their open source framework. O2P uses
CPMC to generate 150 region proposals per image and then
predicts the quality of each region, for each class, using
support vector regression (SVR). The high performance of
their approach is due to the quality of the CPMC regions
and the powerful second-order pooling of multiple feature
types (enriched variants of SIFT and LBP). We also note
that Farabet et al. [67] recently demonstrated good results
on several dense scene labeling datasets (not including
PASCAL) using a CNN as a multi-scale per-pixel classifier.

We follow [59], [68] and extend the PASCAL segmen-
tation training set to include the extra annotations made
available by Hariharan et al. [69]. Design decisions and
hyperparameters were cross-validated on the VOC 2011
validation set. Final test results were evaluated only once.

6.1 CNN features for segmentation
We evaluate three strategies for computing features on
CPMC regions, all of which begin by warping the rect-
angular window around the region to 227 × 227 (we use
TorontoNet for these experiments). The first strategy (full)
ignores the region’s shape and computes CNN features
directly on the warped window, exactly as we did for de-
tection. However, these features ignore the non-rectangular
shape of the region. Two regions might have very similar
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TABLE 4
ILSVRC2013 ablation study of data usage choices, fine-tuning, and bounding-box regression. All experiments use TorontoNet.

test set val2 val2 val2 val2 val2 val2 test test
SVM training set val1 val1+train.5k val1+train1k val1+train1k val1+train1k val1+train1k val+train1k val+train1k

CNN fine-tuning set n/a n/a n/a val1 val1+train1k val1+train1k val1+train1k val1+train1k

bbox reg set n/a n/a n/a n/a n/a val1 n/a val
CNN feature layer fc6 fc6 fc6 fc7 fc7 fc7 fc7 fc7
mAP 20.9 24.1 24.1 26.5 29.7 31.0 30.2 31.4
median AP 17.7 21.0 21.4 24.8 29.2 29.6 29.0 30.3

bounding boxes while having very little overlap. Therefore,
the second strategy (fg) computes CNN features only on a
region’s foreground mask. We replace the background with
the mean input so that background regions are zero after
mean subtraction. The third strategy (full+fg) simply con-
catenates the full and fg features; our experiments validate
their complementarity.

TABLE 5
Segmentation mean accuracy (%) on VOC 2011 validation. Column 1

presents O2P; 2-7 use our CNN pre-trained on ILSVRC 2012.

full R-CNN fg R-CNN full+fg R-CNN
O2P [59] fc6 fc7 fc6 fc7 fc6 fc7

46.4 43.0 42.5 43.7 42.1 47.9 45.8

6.2 Results on VOC 2011

Table 5 shows a summary of our results on the VOC
2011 validation set compared with O2P. Within each fea-
ture computation strategy, layer fc6 always outperforms
fc7 and the following discussion refers to the fc6 features.
The fg strategy slightly outperforms full, indicating that the
masked region shape provides a stronger signal, matching
our intuition. However, full+fg achieves an average accuracy
of 47.9%, our best result by a margin of 4.2% (also modestly
outperforming O2P), indicating that the context provided
by the full features is highly informative even given the
fg features. Notably, training the 20 SVRs on our full+fg
features takes an hour on a single core, compared to 10+
hours for training on O2P features.

Table 6 shows the per-category segmentation accuracy
on VOC 2011 val for each of our six segmentation methods
in addition to the O2P method [59]. These results show
which methods are strongest across each of the 20 PASCAL
classes, plus the background class.

In Table 7 we present results on the VOC 2011 test
set, comparing our best-performing method, fc6 (full+fg),
against two strong baselines. Our method achieves the
highest segmentation accuracy for 11 out of 21 categories,
and the highest overall segmentation accuracy of 47.9%,
averaged across categories (but likely ties with the O2P
result under any reasonable margin of error). Still better
performance could likely be achieved by fine-tuning.

More recently, a number of semantic segmentation ap-
proaches based on deep CNNs have lead to dramatic
improvements, pushing segmentation mean accuracy over
70% [70], [71], [72], [73]. The highest performing of these
methods combine fully-convolution networks (fine-tuned

for segmentation) with efficient fully-connected Gaussian
CRFs [74].

7 IMPLEMENTATION AND DESIGN DETAILS

7.1 Object proposal transformations
The convolutional networks used in this work require a
fixed-size input (e.g., 227 × 227 pixels) in order to pro-
duce a fixed-size output. For detection, we consider object
proposals that are arbitrary image rectangles. We evaluated
two approaches for transforming object proposals into valid
CNN inputs.

The first method (“tightest square with context”) en-
closes each object proposal inside the tightest square and
then scales (isotropically) the image contained in that square
to the CNN input size. Fig. 7 column (B) shows this trans-
formation. A variant on this method (“tightest square with-
out context”) excludes the image content that surrounds
the original object proposal. Fig. 7 column (C) shows this
transformation. The second method (“warp”) anisotropi-
cally scales each object proposal to the CNN input size.
Fig. 7 column (D) shows the warp transformation.

For each of these transformations, we also consider in-
cluding additional image context around the original object
proposal. The amount of context padding (p) is defined as a
border size around the original object proposal in the trans-
formed input coordinate frame. Fig. 7 shows p = 0 pixels
in the top row of each example and p = 16 pixels in the
bottom row. In all methods, if the source rectangle extends
beyond the image, the missing data are replaced with the
image mean (which is then subtracted before inputing the
image into the CNN). A pilot set of experiments showed
that warping with context padding (p = 16 pixels) outper-
formed the alternatives by a large margin (3-5 mAP points).
Obviously more alternatives are possible, including using
replication instead of mean padding. Exhaustive evaluation
of these alternatives is left as future work.

7.2 Positive vs. negative examples and softmax
Two design choices warrant further discussion. The first is:
Why are positive and negative examples defined differently
for fine-tuning the CNN versus training the object detection
SVMs? To review the definitions briefly, for fine-tuning we
map each object proposal to the ground-truth instance with
which it has maximum IoU overlap (if any) and label it as
a positive for the matched ground-truth class if the IoU is
at least 0.5. All other proposals are labeled “background”
(i.e., negative examples for all classes). For training SVMs,
in contrast, we take only the ground-truth boxes as positive
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TABLE 6
Per-category segmentation accuracy (%) on the VOC 2011 validation set. These experiments use TorontoNet without fine-tuning.

VOC 2011 val bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
O2P [59] 84.0 69.0 21.7 47.7 42.2 42.4 64.7 65.8 57.4 12.9 37.4 20.5 43.7 35.7 52.7 51.0 35.8 51.0 28.4 59.8 49.7 46.4
full R-CNN fc6 81.3 56.2 23.9 42.9 40.7 38.8 59.2 56.5 53.2 11.4 34.6 16.7 48.1 37.0 51.4 46.0 31.5 44.0 24.3 53.7 51.1 43.0
full R-CNN fc7 81.0 52.8 25.1 43.8 40.5 42.7 55.4 57.7 51.3 8.7 32.5 11.5 48.1 37.0 50.5 46.4 30.2 42.1 21.2 57.7 56.0 42.5
fg R-CNN fc6 81.4 54.1 21.1 40.6 38.7 53.6 59.9 57.2 52.5 9.1 36.5 23.6 46.4 38.1 53.2 51.3 32.2 38.7 29.0 53.0 47.5 43.7
fg R-CNN fc7 80.9 50.1 20.0 40.2 34.1 40.9 59.7 59.8 52.7 7.3 32.1 14.3 48.8 42.9 54.0 48.6 28.9 42.6 24.9 52.2 48.8 42.1
full+fg R-CNN fc6 83.1 60.4 23.2 48.4 47.3 52.6 61.6 60.6 59.1 10.8 45.8 20.9 57.7 43.3 57.4 52.9 34.7 48.7 28.1 60.0 48.6 47.9
full+fg R-CNN fc7 82.3 56.7 20.6 49.9 44.2 43.6 59.3 61.3 57.8 7.7 38.4 15.1 53.4 43.7 50.8 52.0 34.1 47.8 24.7 60.1 55.2 45.7

TABLE 7
Segmentation accuracy (%) on VOC 2011 test. We compare against two strong baselines: the “Regions and Parts” (R&P) method of [68] and the
second-order pooling (O2P) method of [59]. Without any fine-tuning, our CNN achieves top segmentation performance, outperforming R&P and

roughly matching O2P. These experiments use TorontoNet without fine-tuning.

VOC 2011 test bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
R&P [68] 83.4 46.8 18.9 36.6 31.2 42.7 57.3 47.4 44.1 8.1 39.4 36.1 36.3 49.5 48.3 50.7 26.3 47.2 22.1 42.0 43.2 40.8
O2P [59] 85.4 69.7 22.3 45.2 44.4 46.9 66.7 57.8 56.2 13.5 46.1 32.3 41.2 59.1 55.3 51.0 36.2 50.4 27.8 46.9 44.6 47.6
ours (full+fg R-CNN fc6) 84.2 66.9 23.7 58.3 37.4 55.4 73.3 58.7 56.5 9.7 45.5 29.5 49.3 40.1 57.8 53.9 33.8 60.7 22.7 47.1 41.3 47.9

(A) (B) (C) (D) (A) (B) (C) (D)

Fig. 7. Different object proposal transformations. (A) the original object
proposal at its actual scale relative to the transformed CNN inputs; (B)
tightest square with context; (C) tightest square without context; (D)
warp. Within each column and example proposal, the top row corre-
sponds to p = 0 pixels of context padding while the bottom row has
p = 16 pixels of context padding.

examples for their respective classes and label proposals
with less than 0.3 IoU overlap with all instances of a class
as a negative for that class. Proposals that fall into the grey
zone (more than 0.3 IoU overlap, but are not ground truth)
are ignored.

Historically speaking, we arrived at these definitions
because we started by training SVMs on features computed
by the ImageNet pre-trained CNN, and so fine-tuning was
not a consideration at that point in time. In that setup, we
found that our particular label definition for training SVMs
was optimal within the set of options we evaluated (which
included the setting we now use for fine-tuning). When we
started using fine-tuning, we initially used the same positive
and negative example definition as we were using for SVM
training. However, we found that results were much worse
than those obtained using our current definition of positives
and negatives.

Our hypothesis is that this difference in how positives
and negatives are defined is not fundamentally important
and arises from the fact that fine-tuning data are limited.

Our current scheme introduces many “jittered” examples
(those proposals with overlap between 0.5 and 1, but not
ground truth), which expands the number of positive ex-
amples by approximately 30x. We conjecture that this large
set is needed when fine-tuning the entire network to avoid
overfitting. However, we also note that using these jittered
examples is likely suboptimal because the network is not
being fine-tuned for precise localization.

This leads to the second issue: Why, after fine-tuning,
train SVMs at all? It would be cleaner to simply apply
the last layer of the fine-tuned network, which is a 21-way
softmax regression classifier, as the object detector. We tried
this and found that performance on VOC 2007 dropped
from 54.2% to 50.9% mAP. This performance drop likely
arises from a combination of several factors including that
the definition of positive examples used in fine-tuning does
not emphasize precise localization and the softmax classi-
fier was trained on randomly sampled negative examples
rather than on the subset of “hard negatives” used for SVM
training.

This result shows that it’s possible to obtain close to the
same level of performance without training SVMs after fine-
tuning. We conjecture that with some additional tweaks to
fine-tuning the remaining performance gap may be closed.
If true, this would simplify and speed up R-CNN training
with no loss in detection performance.

7.3 Bounding-box regression

We use a simple bounding-box regression stage to improve
localization performance. After scoring each selective search
proposal with a class-specific detection SVM, we predict a
new bounding box for the detection using a class-specific
bounding-box regressor. This is similar in spirit to the
bounding-box regression used in deformable part models
[18]. The primary difference between the two approaches
is that here we regress from features computed by the
CNN, rather than from geometric features computed on the
inferred DPM part locations.

The input to our training algorithm is a set of N train-
ing pairs {(P i, Gi)}i=1,...,N , where P i = (P ix, P

i
y, P

i
w, P

i
h)



13

specifies the pixel coordinates of the center of proposal
P i’s bounding box together with P i’s width and height in
pixels. Hence forth, we drop the superscript i unless it is
needed. Each ground-truth bounding box G is specified in
the same way: G = (Gx, Gy, Gw, Gh). Our goal is to learn
a transformation that maps a proposed box P to a ground-
truth box G.

We parameterize the transformation in terms of four
functions dx(P ), dy(P ), dw(P ), and dh(P ). The first two
specify a scale-invariant translation of the center of P ’s
bounding box, while the second two specify log-space
translations of the width and height of P ’s bounding box.
After learning these functions, we can transform an input
proposal P into a predicted ground-truth box Ĝ by applying
the transformation

Ĝx = Pwdx(P ) + Px (1)

Ĝy = Phdy(P ) + Py (2)

Ĝw = Pw exp(dw(P )) (3)

Ĝh = Ph exp(dh(P )). (4)

Each function d?(P ) (where ? is one of x, y, h, w) is
modeled as a linear function of the pool5 features of pro-
posal P , denoted by φ5(P ). (The dependence of φ5(P )
on the image data is implicitly assumed.) Thus we have
d?(P ) = wT

?φ5(P ), where w? is a vector of learnable model
parameters. We learn w? by optimizing the regularized least
squares objective (ridge regression):

w? = argmin
ŵ?

N∑
i

(ti? − ŵT
?φ5(P

i))2 + λ ‖ŵ?‖2 . (5)

The regression targets t? for the training pair (P,G) are
defined as

tx = (Gx − Px)/Pw (6)
ty = (Gy − Py)/Ph (7)
tw = log(Gw/Pw) (8)
th = log(Gh/Ph). (9)

As a standard regularized least squares problem, this can be
solved efficiently in closed form.

We found two subtle issues while implementing
bounding-box regression. The first is that regularization is
important: we set λ = 1000 based on a validation set. The
second issue is that care must be taken when selecting which
training pairs (P,G) to use. Intuitively, if P is far from all
ground-truth boxes, then the task of transforming P to a
ground-truth box G does not make sense. Using examples
like P would lead to a hopeless learning problem. Therefore,
we only learn from a proposal P if it is nearby at least one
ground-truth box. We implement “nearness” by assigning P
to the ground-truth box G with which it has maximum IoU
overlap (in case it overlaps more than one) if and only if the
overlap is greater than a threshold (which we set to 0.6 using
a validation set). All unassigned proposals are discarded.
We do this once for each object class in order to learn a set
of class-specific bounding-box regressors.

At test time, we score each proposal and predict its new
detection window only once. In principle, we could iterate
this procedure (i.e., re-score the newly predicted bounding

box, and then predict a new bounding box from it, and so
on). However, we found that iterating does not improve
results.

7.4 Analysis of cross-dataset redundancy
One concern when training on an auxiliary dataset is that
there might be redundancy between it and the test set.
Even though the tasks of object detection and whole-image
classification are substantially different, making such cross-
set redundancy much less worrisome, we still conducted a
thorough investigation that quantifies the extent to which
PASCAL test images are contained within the ILSVRC 2012
training and validation sets. Our findings may be useful
to researchers who are interested in using ILSVRC 2012 as
training data for the PASCAL image classification task.

We performed two checks for duplicate (and near-
duplicate) images. The first test is based on exact matches
of flickr image IDs, which are included in the VOC 2007
test annotations (these IDs are intentionally kept secret for
subsequent PASCAL test sets). All PASCAL images, and
about half of ILSVRC, were collected from flickr.com. This
check turned up 31 matches out of 4952 (0.63%).

The second check uses GIST [75] descriptor matching,
which was shown in [76] to have excellent performance at
near-duplicate image detection in large (> 1 million) image
collections. Following [76], we computed GIST descriptors
on warped 32×32 pixel versions of all ILSVRC 2012 trainval
and PASCAL 2007 test images.

Euclidean distance nearest-neighbor matching of GIST
descriptors revealed 38 near-duplicate images (including all
31 found by flickr ID matching). The matches tend to vary
slightly in JPEG compression level and resolution, and to a
lesser extent cropping. These findings show that the overlap
is small, less than 1%. For VOC 2012, because flickr IDs
are not available, we used the GIST matching method only.
Based on GIST matches, 1.5% of VOC 2012 test images are in
ILSVRC 2012 trainval. The slightly higher rate for VOC 2012
is likely due to the fact that the two datasets were collected
closer together in time than VOC 2007 and ILSVRC 2012
were.

8 CONCLUSION

In recent years, object detection performance had stagnated.
The best performing systems were complex ensembles com-
bining multiple low-level image features with high-level
context from object detectors and scene classifiers. This
paper presents a simple and scalable object detection algo-
rithm that gives more than a 50% relative improvement over
the best previous results on PASCAL VOC 2012.

We achieved this performance through two insights. The
first is to apply high-capacity convolutional networks to
bottom-up region proposals in order to localize and segment
objects. The second is a paradigm for training large CNNs
when labeled training data are scarce. We show that it is
highly effective to pre-train the network—with supervision—
for a auxiliary task with abundant data (image classification)
and then to fine-tune the network for the target task where
data is scarce (detection). We conjecture that the “supervised
pre-training/domain-specific fine-tuning” paradigm will be
highly effective for a variety of data-scarce vision problems.



14

We conclude by noting that it is significant that we
achieved these results by using a combination of classical
tools from computer vision and deep learning (bottom-up
region proposals and convolutional networks). Rather than
opposing lines of scientific inquiry, the two are natural and
inevitable partners.
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[36] P. Krähenbühl and V. Koltun, “Geodesic object proposals,” in
ECCV, 2014.

[37] S. J. Pan and Q. Yang, “A survey on transfer learning,” TPAMI,
2010.

[38] R. Caruana, “Multitask learning: A knowledge-based source of
inductive bias,” in ICML, 1993.

[39] S. Thrun, “Is learning the n-th thing any easier than learning the
first?” NIPS, 1996.

[40] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” TPAMI, 2013.

[41] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “DeCAF: A Deep Convolutional Activation Feature for
Generic Visual Recognition,” in ICML, 2014.

[42] J. Hoffman, S. Guadarrama, E. Tzeng, J. Donahue, R. Girshick,
T. Darrell, and K. Saenko, “From large-scale object classifiers to
large-scale object detectors: An adaptation approach,” in NIPS,
2014.

[43] A. Karpathy, A. Joulin, and L. Fei-Fei, “Deep fragment embed-
dings for bidirectional image sentence mapping,” in NIPS, 2014.

[44] G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik, “R-CNNs
for pose estimation and action detection,” arXiv e-prints, vol.
arXiv:1406.5212v1 [cs.CV], 2014.
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[68] P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and
J. Malik, “Semantic segmentation using regions and parts,” in
CVPR, 2012.
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