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Spatio-Temporal Flame Modeling and Dynamic
Texture Analysis for Automatic

Video-Based Fire Detection
Kosmas Dimitropoulos, Panagiotis Barmpoutis, and Nikos Grammalidis

Abstract— Every year, a large number of wildfires all over the
world burn forested lands, causing adverse ecological, economic,
and social impacts. Beyond taking precautionary measures, early
warning and immediate response are the only ways to avoid
great losses. To this end, in this paper we propose a computer
vision approach for fire-flame detection to be used by an early-
warning fire monitoring system. Initially, candidate fire regions
in a frame are defined using background subtraction and color
analysis based on a nonparametric model. Subsequently, the
fire behavior is modeled by employing various spatio-temporal
features, such as color probability, flickering, spatial, and spatio-
temporal energy, while dynamic texture analysis is applied in
each candidate region using linear dynamical systems and a bag-
of-systems approach. To increase the robustness of the algorithm,
the spatio-temporal consistency energy of each candidate fire
region is estimated by exploiting prior knowledge about the
possible existence of fire in neighboring blocks from the current
and previous video frames. As a final step, a two-class support
vector machine classifier is used to classify the candidate regions.
Experimental results have shown that the proposed method
outperforms existing state-of-the-art algorithms.

Index Terms— Bag of systems (BoS), dynamic textures analy-
sis, fire detection, linear dynamic systems, spatio-temporal
modeling.

I. INTRODUCTION

BECAUSE FIRE is one of the most harmful natural haz-
ards affecting everyday life around the world, early fire

warning systems have attracted particular attention recently.
The most advanced approaches in automatic early forest
fire detection are based on space borne (satellite), airborne
unmanned aerial vehicles or terrestrial-based systems. Among
these, terrestrial systems based on CCD video cameras are
considered as the most promising technology for automatic
fire detection due to their low cost, high resolution, short time
response, and easy confirmation of the alarm by a human
operator through the surveillance monitor.

For this reason, video-based flame detection techniques have
been widely investigated during the last decade. The main
challenge in video-based flame detection lies in the modeling
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of the chaotic and complex nature of the fire phenomenon and
the large variations of flame appearance in video. To address
this problem, many researchers use the motion characteristics
of flame as well as the spatial distribution of fire colors in
the scene or they try to combine both temporal and spatial
characteristics. However, many natural objects have similar
behavior with fire, e.g., the sun, various artificial lights or light
reflections on various surfaces, dust particles, and so on, which
can often be mistakenly detected as flames. In addition, scene
complexity and low-video quality also affect the robustness of
vision-based flame detection algorithms, thus, increasing the
false alarm rate.

On the other hand, dynamic texture analysis has been
successfully applied in the past for the classification of video
sequences in multimedia databases. A dynamic texture in
video can be simply defined as a texture with motion, i.e.,
a spatially and time-varying visual pattern that forms an
image sequence or part of an image sequence with a certain
temporal stationarity [1]. While dynamic texture analysis is
also applied to the categorization of sequences containing
flame, smoke, steam, and so on, these general techniques are
not used in practical fire detection algorithms due to their
high-computational cost [2]. Furthermore, most of the existing
dynamic texture categorization methods are used to model a
complete video sequence or a manually selected image region
in a video, hence, they cannot provide to a fire detection
system neither any information regarding the exact localization
of the fire in the scene nor the time of the fire incident.

Unlike the mentioned methods, this paper uses both
types of flame modeling and makes the following
contributions.

1) A novel method is proposed for flame detection based
on the combination of features extracted from spatio-
temporal flame modeling and dynamic texture analysis.
In this way, the proposed method not only focuses on
the identification of specific fire properties (e.g., color,
motion, flickering, etc.), but exploits also the ability
of linear dynamical systems (LDSs) to analyze the
temporal evolution of the pixels’ intensities to increase
the robustness of the algorithm.

2) The proposed method addresses three significant lim-
itations of LDS-based approaches for dynamic texture
categorization. More specifically: 1) reduces the com-
putational cost required for the dynamic texture analysis
through redundant data reduction; 2) determines the time
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of the fire incident; and 3) localizes the exact position of
the fire in the image. To this end, meaningful information
is identified by first applying a preprocessing step to
filter out noncandidate fire regions and then using a
sliding time window to exclude candidate blocks located
out of the defined subsequence. The exact position
of the fire in the current frame can then be defined
by combining information from spatio-temporal flame
modeling and spatio-temporal consistency energy.

3) An efficient flame behavior modeling is introduced to
identify the color of the fire, the motion characteristics
of flame as well as the random variations of its appear-
ance. Specifically, a number of various spatio-temporal
features is extracted, such as color probability, flickering,
spatial, and spatio-temporal energy, for each candidate
fire region.

4) A novel approach for enhancing the reliability of the
algorithm, namely spatio-temporal consistency energy, is
introduced by exploiting: 1) features extracted from both
spatio-temporal flame modeling and dynamic texture
analysis and 2) prior knowledge about the possible
existence of fire in neighboring blocks from the current
and previous video frames. Inspired by Markov random
field (MRF) approaches, the proposed method estimates
an energy cost consisting of two terms: 1) a data
cost considering the features in the current block and
2) a smoothness cost considering the state of neighbor-
ing blocks in a 3-D image patch.

The remainder of this paper is organized as follows. Related
work is presented in detail in Section II. Section III describes
the detection of candidate fire regions and presents a general
overview of the proposed method. Section IV analyzes the
spatio-temporal flame modeling, while the dynamic texture
analysis is described in Section V. Spatio-temporal consistency
energy and classification of the candidate blocks are presented
in Sections VI and VII, respectively. Finally, experimental
results are discussed in Section VIII, while conclusions are
drawn in Section IX.

II. RELATED WORK

To model fire behavior many researchers aim to identify
various characteristics of flame. For example, Chen et al. [3]
adopted a RGB color model and disorder measurements,
while Liu and Ahuja [4] proposed an algorithm that uses
spectral, spatial, and temporal models of fire regions in visual
image sequences. In addition to ordinary motion and color
clues, Toreyin et al. [5] detected fire flicker by analyzing the
video in the wavelet domain. Quasi-periodic behavior in flame
boundaries were detected by performing temporal wavelet
transforms. In addition, the color variations in flame regions
were detected by computing the spatial wavelet transform of
moving fire-colored regions. Furthermore, Toreyin et al. [6]
used a hidden Markov model to mimic the temporal behav-
ior of flame. Specifically, Markov models representing the
flame and flame colored ordinary moving objects were used
to distinguish flame flicker process from motion of flame
colored moving objects, while spatial color variations in
flame were also evaluated by the same Markov models.

Zhang et al. [7], on the other hand, proposed a contour-based
forest fire detection method using fast Fourier transform (FFT)
and wavelet analysis. The algorithm initially segments fire
regions and then uses FFT method to describe the contour,
while the calculated Fourier descriptors are analyzed with
temporal wavelet.

A different approach was proposed in [8], in which a
rule-based generic color model for flame pixel classification
was introduced. The algorithm uses YCbCr color space to
separate luminance from chrominance more effectively than
color spaces such as RGB. In addition to translating the rules
developed in the RGB and normalized RGB to YCbCr color
space, new rules were proposed in YCbCr color space, which
further alleviate the harmful effects of changing illumination.
Marbach et al. [9] used YUV color model for the repre-
sentation of video data, where time derivative of luminance
component Y was used to declare the candidate fire pixels and
the chrominance components U and V were used to classify
the candidate pixels to be in the fire sector or not. In addition
to luminance and chrominance they have incorporated motion
into their work.

In the fire or nonfire classes, Borges and Izquierdo [10]
proposed a method that analyzes the frame-to-frame changes
of specific low-level features describing potential fire regions,
such as color, area size, surface coarseness, boundary rough-
ness, and skewness. The behavioral change of each of these
features is evaluated and the results are then combined accord-
ing to a Bayes classifier for robust fire recognition. Alterna-
tively, Ko et al. [11] proposed hierarchical Bayesian networks
for fire-flame detection that contained intermediate nodes. Four
probability density functions for evidence at each node were
used. These probability density functions were modeled using
the skewness of the red color and three high frequencies
obtained from a wavelet transform. Later, Ko et al. [12]
also used a fire-flame detection method using fuzzy finite
automata (FFA) with probability density functions based on
visual features, thereby providing a systemic approach to
handle uncertainty in computational systems and the ability
to handle continuous spaces by combining the capabilities of
automata with fuzzy logic.

More recently, within the FP7 EU-funded Firesense
project [13] various flame detection algorithms were devel-
oped. More specifically, Habiboglu et al. [14] proposed a
video-based fire detection system, which uses color, spatial,
and temporal information. The system divides the video
into spatio-temporal blocks and uses covariance-based fea-
tures extracted from these blocks to detect fire. Feature
vectors take advantage of both the spatial and the tem-
poral characteristics of flame-colored regions. Furthermore,
Dimitropoulos et al. [15] proposed a video flame detection
algorithm using a combination of different spatio-temporal
features to detect fire. For the discrimination between fire and
nonfire regions, two classification methods were investigated:
1) a support vector machine (SVM) classifier and 2) a rule-
based approach.

All the aforementioned approaches aim to model the fire
behavior based on the identification of high-level cues like
flame flickering or spatial color distribution of flame colors
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and the use of advanced classification techniques to determine
whether flames exists in the video images or not. However,
problems still exist in many cases, due to the chaotic nature
of fire and the large variations in flame appearance in video.
Recently, 3-D dynamic texture analysis techniques have been
used for the identification of dynamic phenomena, such as
sea, smoke, fire, clouds, leaves in the wind, fog, or waves
especially for the efficient retrieval of video in multimedia
databases. Such dynamic textures can be simply defined as
spatially and time-varying visual patterns that form an image
sequence or part of an image sequence with a certain temporal
stationarity [1]. Several such techniques have been proposed
for modeling, learning, recognizing, and synthesizing dynamic
textures [16]–[19]. Doretto et al. [1] proposed a method
for segmenting a sequence of images of natural scenes into
disjoint regions that are characterized by constant spatio-
temporal statistics. The spatio-temporal dynamics in each
region were modeled using Gauss–Markov models, and their
parameters as well as the boundary of the regions were inferred
in a variational optimization framework. More recently,
Ravichandran et al. [16] proposed a method for the categoriza-
tion of dynamic textures (e.g., water, fire, and smoke). Each
video sequence is modeled with a collection of LDSs, each one
describing a small spatio-temporal patch extracted from the
video. This bag-of-systems (BoS) representation is analogous
to the bag-of-features representation for object recognition,
except that LDSs are used as feature descriptors.

In this paper, a new flame detection method is proposed,
which aims to extend our previous work [15] by modeling
the behavior of the fire using various spatio-temporal features
and taking advantage of the recent advances in dynamic
texture analysis to increase the robustness of the algorithm.
Initially, the algorithm applies background subtraction and
color analysis of the moving regions using a nonparametric
model to identify the candidate regions (blocks) in the image.
Subsequently, the fire behavior is modeled by employing
various spatio-temporal features, such as color probability, spa-
tial energy, flickering, and spatio-temporal energy. Dynamic
texture analysis using LDSs and BoS is applied only to the
candidate fire regions of each frame in a time-window to
reduce the computational cost. In addition, spatio-temporal
consistency is estimated for each candidate fire region by
considering the existence of neighboring: 1) candidate fire
blocks in the current and previous frames and 2) fire blocks
in the previous frames. As a last step, a two-class (fire and
nonfire) SVM classifier with a radial basis function (RBF)
kernel is used to classify the candidate fire regions.

III. DETECTION OF CANDIDATE FIRE REGIONS

The first step of the proposed method aims to filter out
nonfire-colored moving regions. For this reason, every frame
of the video sequence is divided into N × N blocks (in our
experiments N = 16). Background subtraction is used as a
first step to identify moving objects in the video. Based on
the evaluation of thirteen background extraction algorithms
in [15], we chose to use the adaptive median algorithm,
which is fast and very efficient. In the next processing step,

color analysis is applied (Fig. 2) and only blocks that con-
tain an adequate percentage of fire-colored moving pixels
are selected as candidate fire blocks. To filter out nonfire
moving pixels we compare their values with a predefined RGB
color distribution that is created by nonparametric estimation
from a number of real fire-samples from a variety of video
sequences.

Let x1, x2, . . . , xN be N fire-colored training RGB samples
of the distribution to be approximated. Using these samples,
the probability density function of a pixel xt can be nonpara-
metrically estimated using the kernel Kh [20] as

Pr(xt) = 1

N

N∑

i=1

Kh(xt − xi). (1)

If we select a Gaussian kernel, Kh = N(0, S), where S is
a diagonal covariance matrix with different standard deviation
σ j for each color channel j , then the fire color probability can
be estimated as

Pr(xt ) = 1

N

N∑

i=1

3∏

j=1

1√
2πσ 2

j

e
− 1

2

(xt j −xi j
)2

σ2
j . (2)

Using this probability estimation, the pixel is considered as
a fire-colored pixel if Pr(xt ) > th, where the threshold th is
a fixed threshold, which can be adjusted to achieve a desired
percentage of false positives. Similar to [20] fire color prob-
abilities in (2) were calculated very efficiently using lookup
tables based on the intensity value difference and the kernel
bandwidths. For this reason, this technique was preferred over
more advanced iterative techniques using positive and negative
samples [21], [22], which would increase the computational
cost. Hence, if the pixel has a RGB value, which belongs to the
distribution of Fig. 2(b), then it is considered as a fire-colored
pixel. If the percentage of fire-colored pixels within a block
is over a specific level (in our experiments it equals 12.5%),
then, the block is considered as candidate for the next steps.
This level is suitable for most cases, but if cameras are situated
in long distance from fire we can either use smaller blocks or
reduce this level to consider it as candidate. For each candidate
fire block, a vector of six features is computed in the following
steps: 1) fire color probability; 2) spatial wavelet energy;
3) spatio-temporal energy; 4) flickering energy; 5) dynamic
texture analysis; and 6) spatio-temporal consistency energy.
The computation of these features is described in detail in
Sections IV–VI. The final decision (fire/nonfire) is made by
an SVM classifier, as shown in Fig. 1.

IV. SPATIO-TEMPORAL FLAME MODELING

Since many natural objects have similar colors as those
of the fire (e.g., the sun, various artificial lights, or light
reflections on various surfaces), which can often be mistakenly
detected as flames, careful selection of appropriate spatio-
temporal features is needed for modeling the behavior of fire.
More specifically, to accurately model the color space of fire,
we use nonparametric color analysis (presented in Section III),
while the spatial energy in each time instant of a candidate
region is estimated by applying 2-D wavelet analysis only on
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Fig. 1. Proposed methodology.

Fig. 2. (a) RGB color distribution of the training samples. (b) Final fire-color
distribution assuming a global threshold around each sample.

the red channel of the image. We also estimate the spatio-
temporal energy in the candidate block, i.e., the variance of
the spatial energy in the region within a temporal window,
to identify the irregular changes of the fire’s shape. Finally,
temporal analysis is used for flickering detection.

A. Fire Color Probability

For the color probability (Fig. 3) of each candidate block,
the nonparametrically estimated probabilities of each pixel in
the block are used. More specifically, the total color probability
of the candidate block is estimated as the average color
probability of each pixel (i, j) in the block

Pblock = 1

N

∑

i, j

P(i, j) (3)

where N is the number of pixels in the block and P(i, j) is
the fire color probability of each pixel (2).

B. Spatial Wavelet Analysis

Image regions containing real fires exhibit a higher spatial
variation than those containing fire colored objects. To identify
spatial variations in the region various techniques can be

Fig. 3. (a) Fire and (c) nonfire videos. (b) and (d) Corresponding masks.

adopted, such as edge detectors, interest points descriptors,
and so on. In this paper, wavelet analysis using simple filters
(Fig. 4) was used to achieve higher computational efficiency,
since it can be implemented without any single multiplication,
i.e., by simple register shifts. Specifically, a 2-D wavelet
filter is applied on the red channel of each frame and the
spatial wavelet energy at each pixel is calculated by adding
the high–low, low–high, and high–high wavelet subimages
according to

E(i, j) = HL(i, j)2 + LH(i, j)2 + HH(i, j)2 (4)

where HL, LH, and HH are the high-frequency sub-bands of
the wavelet decomposition. For each block, the spatial wavelet
energy is estimated as the average of the energy of the pixels
in the block

Eblock = 1

N

∑

i, j

E(i, j) (5)

where N is the number of the pixels in a block.
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Fig. 4. (a) 2-D spatial wavelet analysis of an image. (b) HL is the
high–low frequencies. (c) LH and (d) HH are the high-frequency sub-bands
of the wavelet decomposition.

Fig. 5. Changes of spatial wavelet energy. (a) and (b) In the case of video
containing actual fire the values of the energy vary between 90 and 700.
(c) and (d) Values of the energy for a video containing a fire colored objects
vary between 0 and 85.

For the single stage wavelet transform, the weights
of the low-pass and high-pass filters are [0.25 0.5 0.25]
and [−0.25 0.5 − 0.25], respectively. Fig. 5 shows the
value changes of spatial wavelet energy in a specific
block for: 1) a subsequence of video containing real fire
[Fig. 5(a) and (b)] and 2) a subsequence of video containing
sunlight reflections [Fig. 5(c) and (d)]. As it is clearly shown,
the values of spatial wavelet energy for the block containing
fire are always higher due to the abnormal shapes formed by
the fire.

C. Spatio-Temporal Analysis

The shape of flame changes irregularly due to the airflow
caused by wind or due to the type of burning material. As a
result, a real fire causes higher spatial variations within a
specific time interval than a fire colored object. On the contrary

Fig. 6. Changes of spatio-temporal energy. (a) and (b) In the case of a
subsequence of a video containing actual fire, the values of the energy vary
between 200 and 235. (c) and (d) Values of the energy for a subsequence
containing fire colored objects vary between 0 and 8.

to the previous feature, which aims to identify high-spatial
energies in a single frame, this feature aims to indicate the
spatio-temporal variations for each block in a sequence of
frames. The temporal variance of the spatial energy of pixel
(i, j) within a temporal window of T last frames is

V (i, j) = 1

T

T −1∑

t=0

(Et (i, j) − Ē(i, j))
2

(6)

where Et is the spatial energy of the pixel in time
instance t and Ē the average value of this energy. For each
block, the total spatio-temporal energy, Vblock, is estimated
by averaging the individual energy of pixels belonging in the
block

Vblock = 1

N

∑

i, j

V (i, j). (7)

As shown in Section VIII, this proposed feature is very
important in discriminating between fire and fire colored
moving objects. As an example, the values of the spatio-
temporal energy for a candidate block in a video containing
actual fire [Fig. 6(a) and (b)] and a video containing a fire
colored object [Fig. 6(c) and (d)] are shown in Fig. 6.

D. Temporal Analysis

Temporal analysis is applied to each candidate block to
detect flickering effect. Flickering, which is one of the main
features of flame, is due to its continuous random motion.
To quantify the effect of flickering in a pixel, we estimate
the number of transitions c(i, j) from fire candidate status,
i.e., moving fire colored pixel, to nonfire candidate status,
i.e., background color or nonmoving pixel, and vice-versa
within a temporal window of T last frames. Then to estimate
flickering energy of pixel (i, j) the following formula was
used:

F(i, j) = 2c(i, j )−1. (8)
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Fig. 7. Changes of flickering energy. (a) and (b) In the case of a subsequence
containing actual fires the values of the energy vary between 240 and 250.
(c) and (d) Values of the energy for a subsequence containing a fire colored
moving object vary between 0 and 80.

The flickering feature Fblock for each block is calculated as the
average of the individual flickering contributions of the pixels
in the block

Fblock = 1

N

∑

i, j

F(i, j). (9)

As an example, in Fig. 7, the values of Fblock for a specific
candidate block in a video containing fire [Fig. 7(a) and (b)]
and a video containing a moving fire-colored object are
indicatively presented.

V. DYNAMIC TEXTURE ANALYSIS

Since fire is a spatially and time-varying visual pattern,
dynamic texture analysis can be applied in addition to spatio-
temporal modeling to increase the reliability of the algorithm
by modeling the temporal evolution of the pixels’ intensities.
To this end, we apply LDSs that were initially proposed
in [1] and a bag-of-dynamical systems approach proposed
recently in [16]. However, since these approaches focus on the
categorization of video sequences containing natural scenes in
multimedia databases, they cannot be applied directly to a fire
detection system.

The main limitation that should be addressed is the com-
putational cost needed for the dynamic texture analysis. For
the categorization of video sequences, dense sampling is
employed, which requires the estimation of LDSs in a large
number of sampled image patches. However, as the spatial
location and the size of the fire is unknown and varies from
a video sequence to a video sequence, many selected image
patches may not contain any information related to fire. It is
easily conceivable that this number is significantly increased
in case of a small fire in the scene, which is mainly the case
for an early fire warning system. Since in our case we do
not focus on scene categorization, but on the detection of a
specific event, such as fire, in the scene, the processing of

this redundant information not only increases prohibitively
the computational cost, but also may introduce noisy data
(i.e., LDSs corresponding to background, nonfire blocks) to
the fire detection system, thus affecting the classification
process. To reduce the computational burden, we focus only
on those image regions for which we have an indication of fire
existence. Toward this end, LDSs are estimated only for the
pixels contained in the candidate fire blocks extracted from
the first processing step of the proposed algorithm. For each
candidate block a 3-D image patch of the same size (16 × 16)
and temporal length equal to 16 (i.e., spatio-temporal cubes
of size 16 × 16 × 16) is formed for the estimation of LDS.

More specifically, given a candidate block of n × n pixels
(n = 16) and F frames of the video sequence (F = 16), we
can model the pixel intensities of the candidate block Iblock(t)
at each time instant t , where t = 1, . . . ,16, assuming that the
pixels contained in the 3-D image patch can be considered as
a LDS

z(t + 1) = Az(t) + Bv(t) (10)

Iblock(t) = Īblock + Cz(t) + w(t) (11)

where z(t) ∈ Rn is the hidden state at time t .
The dynamics of the hidden state is modeled by

matrix A ∈ Rn×n , while matrix C ∈ R p×n (p is the number
of pixels in a candidate block) maps the hidden state to the
output of the system. The quantities w(t) and Bv(t) are the
measurement and process noise, respectively, while Īblock is
the mean value of the pixels’ intensities in a candidate block
for the sequence of F frames

Īblock = 1

F

F∑

t=1

Iblock(t). (12)

To identify the system, i.e., to estimate its parameters,
a principal component analysis-based approach was proposed
in [1]. According to this approach, a singular value decompo-
sition of matrix Y is initially performed

Y = [Iblock(1) − Īblock, . . . ,Iblock(F) − Īblock]
= U�V T. (13)

Based on the outcome of this factorization process, the
temporal evolution of the intensities in a candidate block
can be efficiently described using the parameters of the LDS
descriptor, i.e., Mblock= (A, C), where C = U and matrix A
can be easily computed using least-squares as

A = [z(2), z(3), . . . , z(F)][z(1), z(2), . . . , z(F − 1)]+ (14)

where Z = [z(1), z(2), . . . , z(F)] = �V T are the estimated
states of the system and Z+ represents the pseudoinverse of Z .

Using the extracted LDS descriptors, a codebook can be
formed using K-Medoid classification method as proposed
in [16]. However, to apply classification we need first to define
a similarity metric between LDS descriptors, that is, a cluster-
ing approach applicable to the non-Euclidean space of LDSs
to determine the similarity degree between two descriptors,
e.g., M1 = (A1, C1) and M2 = (A2, C2). To overcome the
problem, subspace angles between the two LDSs are initially
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Fig. 8. Methodology for dynamic texture analysis. a) Training phase and b) testing phase.

calculated and then a Martin distance between M1 and M2 is
used as a comparison metric [16], [23].

Similarly to the sequence categorization problem, where the
training set consists of video sequences from all classes, we
used LDSs corresponding to candidate blocks containing both
fire and fire-colored moving objects. As shown in Fig. 8(a),
these training LDSs are fed into K-Medoid algorithm for the
creation of a codebook consisting of K representative LDSs,
i.e., codewords. Various numbers of codewords can be used
for this purpose, however, previous studies have shown that
using more than 64 clusters does not significantly change the
categorization performance [16]. For this reason and to keep
the computational cost as low as possible, the number of K
was set equal to 64 in our experiments. Given a codebook
of LDSs, a full video sequence can be represented using this
vocabulary. While this is the case in a video categorization
problem, in the case of a real fire detection system, this would
create two significant problems: 1) the system would not be
able to determine the time of the fire incident. However, in
each time instant there should be a decision whether there is a
fire or not in the scene and 2) as time passes the volume of data
is continuously increased. To address the problem, we divided
the video into equally sized subsequences (Fig. 9) using a slid-
ing time window T (in our experiments T = 100) and we then
represent each subsequence as a term frequency histogram h =
[h1, h2, . . . , hK ]T of the predefined codewords. As shown in
Fig. 8(a), such subsequence representations are extracted from
the training data to create two distinctive classes. The first class
contains histograms representing subsequences with real fires,

Fig. 9. (a) 3-D image patch of size 16 × 16 × F (where F = 16) is formed
for each candidate block (three candidate blocks in this figure). (b) LDSs are
estimated only for the candidate blocks of a sliding time window of T frames
(in our experiments we used a time window of 100 frames). 3-D image patches
are formed for the candidate blocks of each frame of the time window.

while the second one consists of histograms corresponding to
fire colored moving objects. These distributions of codewords
are used by the next step for the training of the SVM classifier.

For the classification of a new query, as shown in Fig. 8(b),
the distribution of codewords for a specific subsequence is
estimated and the extracted histogram is send to the SVM
classifier to infer the class label D. This label is assigned as a
feature Dblock to the candidate blocks of the current frame, i.e.,
the last frame of the subsequence, indicating the possibility of
fire existence in this time instant. However, this processing step
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Fig. 10. Calculation of Econsistency using neighboring candidate and fire
labeled blocks from current and previous frames.

cannot provide any information related to the location of the
fire in the scene. Toward this end, the information extracted
from dynamic texture analysis should be finally fused with
that of spatio-temporal flame modeling and spatio-temporal
consistency energy in the classification step of the proposed
method. This combination of data increases also the reliability
of the system, as shown in Section VIII.

VI. SPATIO-TEMPORAL CONSISTENCY ENERGY

In this section, we aim to propose a method for enhanc-
ing the reliability of the algorithm, by considering the fea-
tures extracted from both spatio-temporal flame modeling and
dynamic texture analysis as well as prior knowledge about the
possible existence of fire in neighboring blocks in a 3-D image
patch.

Toward this end, we propose the estimation of a consis-
tency energy inspired by approaches based on MRFs. The
MRF approaches are iterative methods that apply global
optimization to solve labeling problems based on a data
and a smoothness term [24], [25]. However, such techniques
cannot directly be applied to an early fire warning system due
to the increased computational cost required for the energy
minimization procedure. Hence, in this step of the algorithm
we do not attempt to address the problem through an energy
minimization approach, but rather estimate a consistency
energy feature that can be used as an indication of fire in
the block considering the state of neighboring blocks in a 3-D
image patch.

More specifically, we estimate a consistency energy cost
Cblock for each candidate block consisting of two terms:
1) a data cost considering the features in the current block
and 2) a smoothness cost considering the state of neighboring
blocks

Cblock = Edata + Esmoothness. (15)

The data cost is defined as the sum of the previously defined
features for the candidate block in the previous sections

Edata = Pblock + Eblock + Vblock + Fblock + Dblock. (16)

The smoothness term Esmoothness consists of two terms
depending on: 1) the number of candidate fire blocks in the

Fig. 11. Changes of spatio-temporal consistency energy. (a) and (b) In the
case of a subsequence containing actual fire the values of the energy vary
between 1010 and 1070. (c) and (d) Values of the energy for a subsequence
containing a fire colored moving object vary between 0 and 50.

Fig. 12. Firesense data set: screenshots of video sequences containing
(a) actual fires and (b) fire colored moving objects.

current frame and the previous frame and 2) the number of
fire-labeled blocks in the three previous frames, as shown in
Fig. 10. For the estimation of the smoothness term, a 3 × 3
spatial neighborhood around the candidate block is used.
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Fig. 13. Comparison of the proposed algorithm with correlation descriptors [14], multiple features and rule-based classification [15], and spatio-temporal
consistency energy [27] algorithms using Firesense data set. (a) Average true-positive rates. (b) Average false-positive rates. (c) Average for both true- and
false-positive rates.

Fig. 14. Pictorial example of fire detection in three specific blocks.

More specifically, the smoothness term can be defined as

Esmoothness = Ecand + Elabel

=
n∑

i=0

[ai Ncand(t−i)]+
m∑

i=1

[bi Nlabel(t−i)] (17)

where n = 1 (i.e., only current and previous frame are
considered), m = 3 (for the three previous frames), Ncand(t)
is the number of candidate fire-blocks in the neighborhood of
the candidate block in frame t , and Nlabel(t) is the number
of fire-labeled blocks in the neighborhood of the candidate
block in frame t . For our experiments, the following weights
were used a0 = a1 = 1, while b1 = 2, b2 = 1.5, and
b3 = 1. By allocating a larger weight (bi > ai ) to the blocks
that permanently labeled by the algorithm as fire blocks, we
improve the efficiency and reduce the number of false alarms.

As is shown in Section VIII, spatio-temporal consistency
energy feature contributes significantly to the robustness
of the algorithm, as it combines the prior knowledge about
the possible existence of fire in neighboring blocks with
the spatio-temporal and dynamic texture analysis features
of the candidate block. Fig. 11 shows the value of spatio-
temporal consistency energy in a specific block of videos
containing actual fire [Fig. 11(a) and (b)] and fire colored
object [Fig. 11(c) and (d)].

VII. CLASSIFICATION

As a last step, classification is used to obtain the final
decision about whether a block is a fire block or not based
on the extracted features described in the previous sections.
To this end, a feature vector consisting of six features
f = [Pblock, Eblock, Vblock, Fblock, Dblock, Cblock] is created.
This vector is fed as input to a two-class (fire and nonfire)
SVMs classifier with a RBF kernel to classify the candidate
fire regions. The training set consisted of 5000 randomly
selected candidate blocks from four fire and four nonfire video
sequences of the Firesense data set. Specifically, the training
set of candidate blocks was obtained from the positive video
sequences posVideo2, posVideo3, posVideo9, posVideo10 (the
total number of candidate blocks in these video sequences is
16796, 14669, 63806, and 6125, respectively), and from the
negative video sequences negVideo2, negVideo5, negVideo6,
and negVideo8 (the total number of candidate blocks in these
video sequences is 1150, 742, 122, and 501, respectively) of
the Firesense data set. In total, the candidate blocks used for
the training of the SVM algorithm is the 4.81% of the total
number of candidate blocks in the eight fire and nonfire video
sequences.

VIII. EXPERIMENTAL RESULTS

In this section, we present a detailed experimental evaluation
of our method using both fire and nonfire videos from two
data sets: 1) the Firesense data set [26] and 2) a set of
video sequences used in Ko’s experiments [12]. Both data
sets have been used in the past for the comparison of flame
detection algorithms. Specifically, three state of the art algo-
rithms [13] have been tested with the first data set, while three
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Fig. 15. Comparison of the proposed algorithm with Toreyin’s algorithm [5], Ko’s algorithm based on hierarchical Bayesian networks [11], and Ko’s algorithm
based on FFA [12] using the video set used in Ko’s experiments. (a) Average true-positive rates. (b) Average false-positive rates. (c) Average for both true-
and false-positive rates for all algorithms.

Fig. 16. Data set used in Ko’s experiments: screenshots of video sequences
containing (a) actual fires and (b) fire colored moving objects.

other [5], [11], [12] with the second data set. To examine
the proposed fire-flame detection algorithm, we estimated the
number of correctly detected flame frames out of the total
number of flame frames (true positive) and the number of
nonflame frames that erroneously recognized as flame frames
out of the total number of nonflame frames (false positive).
For comparison reasons, a frame is labeled as a fire frame
if it contains at least one fire block, as in [13]. The average
frame rate of the proposed method was 5.2 frames/s for video
sequences with resolution 320 × 240, which is considered
adequate for an early fire warning system. The experiments
were performed with a PC that has a Core i5 2.4-GHz
processor.

Finally, to further analyze the detection efficiency of the
proposed algorithm, we provide a detailed study regarding
the contribution of each feature in the classification process.
Specifically, we apply the proposed algorithm to both data
sets excluding each time one feature from the classification
process. In each evaluation test, we follow the same training
strategy for the SVM classifier, i.e., the same training candi-
date blocks are used, however, the excluded feature (or a set

of features) is ignored each time from the training process of
the SVM.

A. Firesense Data Set

The Firesense data set consists of eleven fire videos and
ten nonfire videos (Fig. 12). The performance of the proposed
method was compared with three existing flame detection algo-
rithms that were tested with this data set in [13]: 1) correlation
descriptors [14]; 2) multiple features and rule-based classifi-
cation [15]; and 3) spatio-temporal consistency energy [27].

As shown in Fig. 13, the proposed method outperforms
with an average true-positive rate of 99.17%, while it did
not produce any false positive due to the coupling of spatio-
temporal modeling and dynamic texture analysis. A small
number of missed detections was only observed in the last
video of Fig. 12(a), where the size of the fire is extremely
small in the first frames of the sequence. On the other hand, the
rule-based classification [15], which is only based on spatio-
temporal features, gives high-fire detection rates, however,
it is significantly vulnerable to false alarms produced by
fire-colored moving objects. The estimation of the consis-
tency energy of the spatio-temporal features, proposed in our
previous work [27], and its inclusion in the classification
process, shows that improves significantly the robustness of
the algorithm, reducing, however, slightly its detection ability.
On the contrary, the use of 3-D spatio-temporal image patches
instead of 2-D blocks and the estimation of the covariance
matrix descriptors in [14] produce low-false alarms rates,
affecting, however, the detection rate of the algorithm.

Regarding the computational cost of the dynamic texture
analysis, as it was mentioned in Section V, only pixels
contained in the candidate fire blocks are considered for the
estimation of LDSs. This approach reduces significantly the
computational burden in comparison with the dense sampling
used for the categorization of video sequences. The computa-
tional gain heavily depends on the size of fire in the image. For
instance, in the fifth video sequence in Fig. 12(a), in which
the fire covers a large part of the image, the computational
cost is reduced by 72.04%, while in case of small fires
[e.g., the sixth video in Fig. 12(a)] the reduction is even higher,
i.e., 98.65% and can reach to 99.54% in nonfire videos [e.g.,
sixth video in Fig. 12(b)]. Fig. 14 shows a pictorial example
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Fig. 17. Contribution of the main three elements of the proposed algorithm to the classification process. (a) Average true-positive rates. (b) Average
false-positive rates. (c) Average for both true- and false-positive rates.

Fig. 18. Contribution of features participating in the spatio-temporal flame modeling to the classification process. (a) Average true-positive rates. (b) Average
false-positive rates. (c) Average for both true- and false-positive rates.

of fire detection [first video in Fig. 12(a)] in three specific
blocks of the image with respect to time.

B. Video Sequences Used in Ko’s Experiments

To further evaluate the performance of the proposed method,
we tested our algorithm on the video set (Fig. 16) used in
Ko’s experiments, which consists of eight fire videos and eight
nonfire videos. Its performance was compared with three state
of the art algorithms: 1) Toreyin’s algorithm [5]; 2) Ko’s
algorithm based on hierarchical Bayesian networks [11]; and
3) Ko’s algorithm based on FFA [12].

Toreyin’s algorithm, which is based purely on spatio-
temporal features, produces lower detection rate than the other
three algorithms. In addition, Ko’s method [11] produces better
classification results using hierarchical Bayesian networks,
however, it also seems to miss a significant number of real
fire flames. As shown in Fig. 15, both algorithms produce a
number of false alarms, which are mainly due to continuous
light changes in some videos, especially those containing
flickering car lights. On the other hand, the method based
on FFA [12] produces high-detection rates due to the use
of feature probability models for detecting flame flickering
over time. The missed detections are owned to the abrupt
movements of flame due to the wind, as the method is based
on the assumption, which is not always true, that fire has
only upward motion. Nevertheless, the method seems to be
really robust to false alarms. Finally, the proposed algorithm

provides extremely high-detection rates, 99.65%, while it is
able to discriminate fire-colored moving objects from real fires
without producing any false alarm.

C. Analysis of Features’ Contribution

In this section, we elaborate a more detailed analysis on
the experimental results in terms of the contribution of each
feature in the classification process. To have a more clear view,
we apply a two-step validation procedure using both Firesense
and Ko’s datasets: we first analyze the contribution of each
one of the three main elements of the proposed method,
i.e., spatio-temporal modeling, dynamic texture analysis, and
spatio-temporal consistency energy, and then we study the role
of each individual spatio-temporal feature in the classification
approach. As it was also mentioned, in each evaluation test we
exclude one feature or a set of features from the classification
process. To have comparable results, we also train each time
the SVM classifier using the same training data (i.e., the
5000 candidate blocks), but ignoring the excluded feature or
features from the training process.

Fig. 17 shows the average detection rate of the algorithm
using each time one of the three main parts of the proposed
method. As it is clearly shown, dynamic texture analysis
produces lower detection rate, 84.25%, than spatio-temporal
modeling, 91.12%, while the detection rate is significantly
increased when we couple spatio-temporal modeling with
spatio-temporal consistency energy, 97.66%, (in this case
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only spatio-temporal features are considered in the estima-
tion of the energy). It is worth mentioning that when we
exclude spatio-temporal consistency energy (i.e., using only
dynamic texture analysis and spatio-temporal flame modeling)
the detection rate remains low, i.e., 91.34%. This fact really
indicates the significance of the proposed spatio-temporal
consistency energy in the classification process. On the other
hand, as it is clearly shown in Fig. 17(b), the dynamic
texture analysis is extremely robust to false alarms, as no
false positive is produced. Similarly, spatio-temporal consis-
tency energy contributes significantly to the reduction of the
false-positive rate of spatio-temporal flame modeling from
4.93% to 0.25%.

The above analysis makes evident that each of the three
main elements of the proposed algorithm plays a crucial role
in the classification process. More specifically, spatio-temporal
features contribute mainly to the increase of the detection rate
of the algorithm, while dynamic texture analysis enhances
the robustness of the algorithm to false alarms. Finally, the
consistency energy seems to improve both true- and false-
positive rates. The exclusion of any of the above elements
from the classification process deteriorates significantly the
performance of the algorithm, as shown in Fig. 17.

The next validation tests concern the contribution of spatio-
temporal flame modeling features to the classification process.
Similarly, the SVM classifier is trained with the same training
set of 5000 candidate blocks and then the proposed algorithm
is evaluated using both Firesense and Ko’s video data sets
excluding each time a particular feature from both the training
and classification process. Experimental results show that
spatio-temporal analysis feature proposed in this paper for the
identification of the random variations of flame appearance
plays a significant role in the classification process.

On the other hand, the detection of fire’s random motion
through temporal modeling improves the robustness of the
algorithm, since many fire-colored moving objects do not
cause any flickering effect (however, this is not true in the case
of car lights, reflections and so on, where temporal modeling
has less contribution to the classification process). Finally,
while color is a significant factor for filtering out regions
containing moving objects, it contributes less than the other
features to the classification process as all candidate blocks
(either containing fire or nonfire objects) contain pixels with
color similar to that of fire.

D. Parameters’ Analysis

In all experimental results presented in this section (Fig. 18),
we used a block size equal to 16 × 16, which was used in
the past by other researchers [14]. By reducing the size of the
block, the detection rate can be further increased, since the
algorithm is able to detect even smaller fires, however, this
also increases the false alarm rate. Similarly, by increasing
the size of the block, we can enhance the robustness of the
algorithm, reducing, however, its sensitivity. For instance in
the last fire video of Firesense data set, where the size of the
fire is small in the first frames of the video, the detection
rate is reduced to 64.8% from 93.787% for a block size

of 32 × 32, while it is increased to 95.27% for a block
size of 8 × 8. However, using 8 × 8 blocks increases the
false alarm rate by 2.16% for videos containing car lights.
Furthermore, the use of a time window of 100 frames seems
to be suitable, since larger values increase the computational
cost, while smaller values reduce the detection rate of the
algorithm (e.g., values below 50 produce a reduction of 9% to
the detection rate). Finally, the size of the codebook was set
to 64, since as it was discussed in Section V, a larger code-
book size does not significantly improve the categorization
performance.

IX. CONCLUSION

In this paper, we proposed an algorithm for real time video-
based flame detection. By modeling both the behavior of the
fire using various spatio-temporal features and the temporal
evolution of the pixels’ intensities in a candidate image block
through dynamic texture analysis, we showed that we can have
high-detection rates, while reducing the false alarms caused
by fire-colored moving objects. The use of spatio-temporal
consistency energy increases the robustness of the algorithm
by exploiting prior knowledge about the possible existence
of fire in neighboring blocks from the current and previous
video frames. Experimental results with 37 videos containing
actual fire and moving fire colored objects showed that the
proposed algorithm outperforms existing flame detection algo-
rithms. Due to the dynamic texture analysis, the computational
requirements of the proposed method are higher compared
with these of other algorithms-based solely on spatio-temporal
modeling, however, the average frame rate of the algorithm
is still considered adequate for an early fire warning system.
Future implementations in FPGAs are expected to increase
more the average frame rate of the algorithm.

REFERENCES
[1] G. Doretto, A. Chiuso, Y. Wu, and S. Soatto, “Dynamic textures,” Int.

J. Comput. Vis., vol. 51, no. 2, pp. 91–109, Feb. 2003.
[2] E. A. Cetin et al., “Video fire detection––Review,” Digit. Signal Process.,

vol. 23, no. 6, pp. 1827–2843, Dec. 2013.
[3] T.-H. Chen, P.-H. Wu, and Y.-C. Chiou, “An early fire-detection method

based on image processing,” in Proc. ICIP, Oct. 2004, pp. 1707–1710.
[4] C.-B. Liu and N. Ahuja, “Vision based fire detection,” in Proc. ICPR,

Aug. 2004, pp. 134–137.
[5] B. Toreyin, Y. Dedeoglu, U. Gudukbay, and A. Cetin, “Computer vision

based method for real-time fire and flame detection,” Pattern Recognit.
Lett., vol. 27, no. 1, pp. 49–58, Jan. 2006.

[6] B. Toreyin, Y. Dedeoglu, and A. E. Cetin„ “Flame detection in video
using hidden Markov models,” in Proc. IEEE Int. Conf. Image Process.,
Sep. 2005,

[7] Z. Zhang, J. Zhao, D. Zhang, C. Qu, Y. Ke, and B. Cai, “Contour based
forest fire detection using FFT and wavelet,” in Proc. CSSE, Dec. 2008,
pp. 760–763.

[8] T. Çelik and H. Demirel, “Fire detection in video sequences using
a generic color model,” Fire Safety J., vol. 44, no. 2, pp. 147–158,
Feb. 2009.

[9] G. Marbach, M. Loepfe, and T. Brupbacher, “An image processing
technique for fire detection in video images,” Fire Safety J., vol. 41,
no. 4, pp. 285–289, Jun. 2006.

[10] P. V. K. Borges and E. Izquierdo, “A probabilistic approach for vision-
based fire detection in videos,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 20, no. 5, pp. 721–731, May 2010.

[11] B. C. Ko, K.-H. Cheong, and J.-Y. Nam, “Early fire detection
algorithm based on irregular patterns of flames and hierarchical
Bayesian networks,” Fire Safety J., vol. 45, no. 4, pp. 262–270,
Jun. 2010.



DIMITROPOULOS et al.: SPATIO-TEMPORAL FLAME MODELING AND DYNAMIC TEXTURE ANALYSIS 351

[12] B. C. Ko, S. J. Ham, and J. Y. Nam, “Modeling and formalization
of fuzzy finite automata for detection of irregular fire flames,” IEEE
Trans. Circuits Syst. Video Technol., vol. 21, no. 12, pp. 1903–1912,
Dec. 2011.

[13] K. Dimitropoulos et al., “Flame detection for video-based early fire
warning for the protection of cultural heritage,” in Proc. 4th Int.
Conf. Prog. Cult. Heritage (EuroMed), Limassol, Cyprus, Oct. 2012,
pp. 378–387.
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