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Abstract Catadioptric omnidirectional view sensors have

found increasing adoption in various robotic and surveil-

lance applications due to their 360� field of view. However,

the inherent distortion caused by the sensors prevents their

direct utilisations using existing image processing tech-

niques developed for perspective images. Therefore, a

correction processing known as ‘‘unwrapping’’ is com-

monly performed. However, the unwrapping process incurs

additional computational loads on central processing units.

In this paper, a method to reduce this burden in the com-

putation is investigated by exploiting the parallelism of

graphical processing units (GPUs) based on the Compute

Unified Device Architecture (CUDA). More specifically,

we first introduce a general approach of parallelisation to

the said process. Then, a series of adaptations to the CUDA

platform is proposed to enable an optimised usage of the

hardware platform. Finally, the performances of the

unwrapping function were evaluated on a high-end and

low-end GPU to demonstrate the effectiveness of the par-

allelisation approach.

Keywords Omnidirectional sensor � Image

unwrapping � GPU � Parallelisation � CUDA � Bilinear

interpolation

1 Introduction

Over the past decades, catadioptric omnidirectional view

sensors (COVS) have gained increasing popularity in partic-

ular in robotic and surveillance applications. This is mainly

attributed to the large field of view provided by the sensors

thus allowing simultaneous monitoring of the surrounding in

different view angles. For most robotic applications, however,

the main difficulty in utilising omnidirectional view images

has been the inherent view distortion caused by the curvature

of the sensors. This distortion causes a problem when con-

ventional computer vision techniques, such as those related to

recognition and detection, are applied to the system. In order

to remove the distortion and correct the omnidirectional view

images into perspective view, one would require that the

captured image be unwrapped.

Several unwrapping techniques had been previously

developed to cater to different mirror profiles and applica-

tions. For COVS of single viewpoint (SVP) [1], Lei et al. [12]

developed a common unified panoramic unwrapping method

that utilises Scaramuzza et al.’s calibration technique [19].

Their approach relies on a Taylor series approximation and

checker-box patterns distorted by the mirror’s curvature to

calibrate the overall sensor. Nayar [14] also previously

proposed an unwrapping method for paraboloidal mirrors

using geometrical solution. For non-SVP mirrors such as the

spherical ones, Jeng and Tsai [11] proposed a calibration

using ground-truth information to achieve panoramic

unwrapping on all mirror profiles. Other noteworthy works

also include the ground plane unwrapping method proposed

by Hicks and Bajcsy [9] and Gaspar and Santos-Victor [7].

Currently, state-of-the-art computer vision techniques

involved in robotic applications such as scene/object recog-

nition, human detection, etc., are computational intensive

even with modern hardware. The addition of the unwrapping
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process, as such, further compromises the overall processable

frame rate of the system. To the best of our knowledge,

although various unwrapping techniques have been maturely

developed in the field, the issue on real-time processing of the

unwrapping process is rarely discussed in the literature. One

related work on this matter is an implementation on field-

programmable gate array [4]. Their approach had considered a

constant look-up table to address the coordinate mapping that

is essential in the unwrapping process.

In this work, we demonstrate that the unwrapping pro-

cess can be efficiently realised to deliver a real-time per-

formance on NVIDIA’s graphical processing units (GPUs)

with Compute Unified Device Architecture (CUDA).

Contrary to [4], a dynamic coordinate mapping was

incorporated into our design consideration. The unwrap-

ping routine is first analysed to devise a general approach

of parallelisation without considering platform-specific

adaptation. However, it was found that the fastest Intel

CPU failed marginally to meet the real-time requirements.

Therefore, we subsequently introduce optimisation strate-

gies targeted at CUDA platform to take advantage of the

hardware capability in general. Finally, the processing

speed of the approach is demonstrated on two NVIDIA

GPUs with compute capability of 3.0 and 1.1.

In Sect. 2, an unwrapping method proposed for spherical

omnidirectional view sensors is briefly explained. Further

on, the general parallelisation approach and the CUDA-

specific tuning are documented in Sects. 3 and 4, respec-

tively. Results and discussion are provided in Sect. 5, while

Sect. 6 concludes this paper.

2 Proposed unwrapping method

An unwrapping technique tailored for spherical COVS was

developed by solving the geometry of the ray traces cap-

tured by the sensor. It can be conveniently grouped into

three key stages.

Initially, the radius of the sphere, R, and the distance

measured from its centre to the projection centre, h, are

derived using a standard camera calibration procedure [22].

Then, a relationship that maps a world point, Pw qw; zwð Þ; to

its corresponding mirror point, Pm qm; zmð Þ; and subse-

quently image point, Pi qi; zið Þ; can be observed with Eqs.

(1) and (2), respectively. Pm are points residing on the

surface of a virtual sphere that is used to substitute the

actual mirror in the perspective projection model [8]. All

the corresponding q in the coordinates are the result of a

dimension reduction from P x; y; zð Þ to P q; zð Þ with

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 þ y2Þ
p

:

X

6

n¼0

anq
n
m ¼ 0 ð1Þ

where the coefficients, an, of the polynomial in Eq. (1) are

given by

a6 ¼ 16h4 z2
w þ q2

w

� �

a5 ¼ �16h4R2qw

a4 ¼ 4h2R2 h2R2 þ 2hR2zw þ �8h2 þ 2R2
� �

z2
w

�

þ �8h2 þ 2R2
� �

q2
w

�

a3 ¼ 4h2R4 6h2 � R2 � 2hzw

� �

qw

a2 ¼ R4 �4h4R2 þ h2R4 þ �8h3R2 þ 2hR4
� �

zw

�

þ �4h2 þ R2
� �2

z2
w þ 20h4 � 12h2R2 þ R4

� �
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w

�

a1 ¼ �2hR6 4h2 � R2
� �

h� zwð Þqw

a0 ¼ �R6 4h4 � 5h2R2 þ R4
� �

q2
w

qi ¼
f

h� zm

qm ð2Þ

Since the mapping equations are in a closed form, the

reverse projection from Pi to Pm to Pw is also possible

using the following equations:

qm ¼
fh�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h2q2
i þ f 2R2 þ q2

i R2
p

f 2 þ q2
i

qi ð3Þ

zw ¼ zm � qm � qwð Þ
hR4 þ R4 þ 2h2 2q2

m � R2
� �� �

zm

qm R4 � 4h2z2
m

� �

" #

ð4Þ

Finally, a projection plane is required to form the final

output (i.e. the ‘‘unwrapped’’ image). In this paper, we

considered the commonly used yet most computationally

expensive cuboid panoramic unwrapping. It uses a projection

configuration shown in Fig. 1. This form of unwrapping is

comparatively expensive in computation because the q� z

plane coordinate mapping is unique to every different qw in

each row of the final output. For cylinder panoramic

unwrapping, pw is always kept constant. For the ground

plane unwrapping, qw is also unique but a ground plane

unwrapping generally produces an output that has a much

smaller size as compared to the cuboid unwrapping.

The cuboid unwrapping requires three pieces of infor-

mation to form four identical projection planes—the per-

pendicular distance of each plane to the optical axis,

yw,s, the vertical start location of each plane zw,s, and the

corresponding end location, zw,e. Both zw,s and zw,e can be

deduced from Eqs. (3) and (4) by obtaining two input

points, qi,s and qi,e. The vertical length of the projection

planes is bzw;e � zw;sc while the horizontal length can be

deduced geometrically as b2yw;sc:
Once the projection planes are set up, they are divided

into equally sized pixels. The mapping of each pixel of the

J Real-Time Image Proc

123



projection planes to the image plane is then calculated from

Eqs. (1) and (2) using their coordinates in the 3-dimen-

sional space (prior to this, their x and y coordinates have

been simplified into q). Two look-up tables, LUTx and

LUTy; that have similar sizes to the projection planes are

then used to hold the mapped results.

Given the look-up tables, an unwrapped image as shown

in Fig. 2 can then be produced using the common 2-dimen-

sional (2D) data interpolation techniques (e.g. bilinear

interpolation). Given a video stream, the unwrapping can

proceed on using the same look-up tables until a change in

projection planes is needed. For example, changing yw,s will

simulate a zooming effect while changing zw,s and zw,e results

in a change of the viewing window. The mapping calculation

does not necessary be a one-off process. Considering a

transition effect (e.g. zooming from near to far), this would

require a recalculation of the mapping for every video frame.

3 Parallelisation approach in general

In this section, we describe the parallelisation approach for

the said unwrapping method in general. There are basically

two processes involved in the unwrapping process—the

LUTx and LUTy calculations that are carried out on

demand, and the data interpolation from the omnidirec-

tional view video stream that is carried out for every frame.

However, the mapping procedure is not executed until a

change in viewpoint is needed. Therefore, there are two

states to be considered. At the ‘‘stable state’’, the system

executes the unwrapping using the same LUTx and LUTy

for each incoming video frame. At the ‘‘transition state’’,

the system emulates a smooth transition from one view-

point to another and therefore the LUTx and LUTy have to

be recalculated for every frame prior to the data interpo-

lation procedure.

The video frame configuration used in this work has a

24-bit wide pixel size (i.e. 3 colour channels) that uses the

common red, green, blue colour model.

3.1 Mapping procedure

The mapping procedure initiates with the calculation of the

respective qw that is constant in each column. This calcu-

lation is expensive because it involves a square root

operation [Complexity of O M nð Þð Þ] using the Newton

Raphson’s method (NR) [3]. Subsequently, the mapping

procedure proceeds to solve Eq. (1), which is the bottle-

neck of the process. However, there are several tweaks that

enable a high-speed calculation. First, the coefficients of

Eq. (1) are rearranged to allow as much constant grouping

of R and h as possible. This will enable an off-line compile-

time calculation of the relevant constants. In particular, a4

and a2 will benefit from this rearranging.

At the end of the entire mapping procedure, it is required

to revert qi into xi and yi. Therefore, to avoid a second call

to the square root operation, it is also useful to calculate the

sine and the cosine angle, h, of each qw at this stage.

sin h ¼ xw

qw

cos h ¼ yw;s

qw

ð5Þ

Second, because the pixels in all four of the planes have

the exact same coordinates in the 2D q – z plane and each

half of the projection plane is also a mirror of the other

half, the mapping computation can be quantitatively

reduced to one-eighth of the original load. This property

of the projection planes will be further discussed in Sect.

3.2. In the subsequent part of this paper, this half-portion

projection plane is referred to as the half-plane for brevity.

Third, for a qualitative reduction, only one of the roots

(i.e. mirror points, qm) of Eq. (1) is valid for the coordinate

mapping, while the other five are not useful in this applica-

tion. Given that there is a good initial guess of the correct root

in the first place, a suitable numerical root-finding algorithm

can be used to solve the desired root. In fact, since qi, s is

known initially, a corresponding qm, s obtained using Eq. (3)

Fig. 1 The cuboid projection planes can be deduced given that the

perpendicular distances of each plane to the optical axis, yw,s, the

vertical start location of each plane, zw,s, and the corresponding end

location, zw,e, are available. Each projection plane consists of two

half-planes that are mirror to each other. The red dot denotes the first

pixel location in a half-plane. C is the centre of projection
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serves as a good initial guess for the first pixel’s qm in the

half-plane. As shown in Fig. 3, all the mirror points corre-

sponding to the half-plane’s pixels are densely packed to one

another. Therefore, if the first pixel is solved, it can then

serve as a subsequent initial guess to its neighbouring half-

plane pixels.

By exploiting this property, a systematic procedure as

shown in Fig. 4 can be devised to solve all the qm in the half-

plane. As the first pixel’s corresponding qm is obtained, the

pixels in the first row can be solved sequentially. Then, each

column in the half-plane can be solved in a parallel manner

using the first row as the initial guesses. For a general sense of

parallelisation, one can delegate each column to a separate

processing thread. Note that theoretically, there is little dif-

ference if the propagating direction first starts from the col-

umn and then the row. With all the qm solved, the

corresponding qi can be obtained via Eq. (2). Due to the

concern with processing speed, NR has been chosen for the

relevant procedure since it is known to be the fastest algo-

rithm at the time of writing.

3.2 Data interpolation procedure

The data interpolation procedure is the second step in the

unwrapping process. As previously discussed in the map-

ping procedure, the LUTx and LUTy computed are only

one-eighth of the required size. Before proceeding to the

interpolation process itself, the rest of the mapping values

have to be recovered.

Figure 5 illustrates the top view of the complete cuboid

projection planes. Let pn be the nth half-plane in the cuboid

where p1 is the half-plane referred in the mapping proce-

dure, and xi;1; yi;1

� �

be an image point calculated for p1; the

corresponding image points in other half-planes can be

resolved as shown in Fig. 5, involving mostly inversion

and swapping of the coordinates. With the coordinates of

each half-planes resolved, the data interpolation procedure

is fairly straightforward since the calculations for each

pixel are isolated in this process. The bilinear interpolation

method is opted in this procedure.

Parallelisation in this procedure is fairly straightforward.

Each processing thread should work on one pixel on the

half-plane at a time and completes eight interpolations on

the output image, respectively. Apart from that, a standard

optimisation can also be applied to the bilinear interpola-

tion function in this procedure where type casting is used in

Fig. 2 Using the unwrapping technique [5], a cuboid panoramic unwrapping can be produced

Fig. 3 The mirror points corresponding to a half-plane are densely

packed to one another. The red mark corresponds to the first pixel in

the half-plane, the blue marks correspond to the first row, while the

green marks correspond to the rest of the pixels

Fig. 4 A systematic procedure is used to solve all the qm in the half-

plane using qm, s. The first pixel (red dot) is solved from qm, s, then

the first row (blue arrow) is solved sequentially using the first pixel’s

qm. Finally, each column (red arrows) is solved sequentially using the

first row’s qm as the initial guesses
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favour of the floor and ceiling function (floor() and

ceil()) in the standard C?? mathematics function

library. This is possible because the values in LUTx and

LUTy are all positive and type casting always rounds

floating point numbers to the nearest zero. ceil() is

benefited from type casting because it is equivalent to

floor() ?1.

4 Adaptation on CUDA platform

In Sect. 5, it is shown that, although with the various op-

timisations introduced, the fastest Intel CPU had margin-

ally failed at meeting a specific real-time requirements. In

order to combat with the situation, an alternative using

GPU computing was investigated.

In recent years, GPU computing has shown widespread

adaptation since the introduction of the NVIDIA GPUs

with CUDA capability. ATI (currently AMD) later also

responded with STREAM-enabled GPUs that have a sim-

ilar functionality. Nevertheless, due to a wider availability

and technical support community, we have chosen the

CUDA platform over STREAM for this adaptation.

The advantages of such GPUs are the massive thread

deployment handled by the multi-processors (MP). A typ-

ical CUDA application usually allows parallel-running

threads in the magnitude of hundreds in total, according to

the hardware’s capability. Apart from that, GPU computing

also benefits image processing problem in general as there

are access to hardware-implemented functionalities such as

the bilinear interpolation.

However, contrary to common beliefs, the advantage of

parallel processing using CUDA platform was not gained

merely due to the sheer hardware specification. Instead,

careful design that compensates for the limitation of the

platform is the major contributor that enables the efficient

usage of the MP in CUDA GPUs. In particular, CUDA is

prone to issues relating to memory access where a badly

designed scheme will usually fail due to non-coalesced

accesses. Other than that, the load of each thread should be

light in processing footprint due to the limited resource

shared by each other.

4.1 Criteria for efficient implementation

An efficient implementation on CUDA platform requires

attention on the hardware resource micromanagement as it

has the bottleneck often occurring on the data access

latency. First, the data reside in the system-wide random

access memory (RAM), and the data in the GPU’s video

RAM (VRAM) are not directly accessible by each other

without a high latency memory transfer. Therefore, input

data have to be transferred from RAM to VRAM prior to

any processing on the GPU kernel. After the data are

processed, a reverse transfer is again necessary. In the

CUDA’s context, the VRAM are termed global memory

(GM). In order to avoid further latency, intermediate data

transfer of such should be avoided even if one of the stages

were performed faster on a CPU. This usually happens

when one of the stages in a calculation cannot be effec-

tively designed to run in parallel.

Second, access of GM by the kernel should be kept coa-

lesced for optimum speed. For a GPU with a compute

capability of 1.1, each running thread within half of a warp

must sequentially access data in 4-, 8- or 16-byte word length

and all 16 words should lie in a 64-, 128- or 256-byte seg-

ment, respectively [16] (for a compute capability of 3.0,

sequential access is not required). In CUDA’s context, warps

are groups of threads that are simultaneously executed by the

MP. If the requirements for coalesced access are not met,

each half wrap must issue sixteen 32-byte memory requests

for each thread at worse instead of a single coalesced access,

thus rendering a penalty of 169 slower speed.

Third, the utilisation of different memory types requires

planning. There are basically four memory types in CUDA,

each with different latencies, lifetime and advantages asso-

ciated. The registers are the fastest piece of memory but they

are scarce. In addition, they have the lifetime and access

scope of a thread, and their utilisation is controlled by a

compiler instead of by design. The shared memory (SM)

comes in second and has the lifetime and access scope of a

block. It is physically divided into 16 banks for a device

with a compute capability of 1.1 (32 banks for a compute

capability of 3.0) and multiple access to a bank should be

avoided to prevent serialised requests. The constant memory

comes in third. It is a read-only globally accessible cached

memory but with a very limited size. The texture memory

Fig. 5 Top view of the cuboid projection planes with pn as the nth

half-plane. p1 is the half-plane calculated in the mapping procedure.

The corresponding transformations of an image point xi;1; yi;1

� �

in p1

to the rest of the half-planes are depicted above
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(TM) and GM have the highest latency. The GM is faster

than the TM when access is coalesced. The TM on the other

hand is a form of read-only, cached GM that is ideal when

coalesced access to the GM is not possible. It also provides

hardware-implemented data interpolation if necessary.

4.2 Mapping procedure

The proposed mapping procedure has three stages of cal-

culation. The first stage involves the column-wise con-

stants’ preparation, while the second stage calculates the

first row’s qm. Naı̈vely, the first stage’s kernel can be

designed so that each thread processes the constants of

each column independently. Subsequently, in the second

stage, another kernel that can only have one active thread

will serially compute the qm on the first row. Although this

design works, it is not optimum because the first kernel

calculates and stores data that are needed by the second

kernel to the GM. Thus, it forces an unnecessary fetching

of data that will only be used once from the GM during the

second kernel’s execution.

A more optimised design for stage one and two is to

combine them into a single execution. Let k be the warp

size of the GPU, this design will require the kernel to have

a single block of size 1 9 k threads. In the first step of the

kernel, each thread calculates the first k column-wise

constants, stores them to the GM, and also keeps a copy of

the k pw constants in the SM. In the second step, only the

first thread will be active and the corresponding k qm are

calculated from the constants stored in the SM. In the third

step, all threads are again active and store the k qm to the

GM. Finally, the process is repeated for the subsequent

k columns until all columns are processed. Figure 6 and

Algorithm 1 summarise these two stages.

In the third stage of the mapping procedure, a kernel is

designed to have blocks with a single row but columns in

the multiple of k. Each thread in each block will be

responsible for one column in the half-plane. The execution

of this kernel is fairly straightforward where each thread

iteratively deduces all the mirror points for their respective

columns and, subsequently, their image points. Note that

for this entire scheme to work efficiently under coalesced

access, unlike the general implementation, the order of

propagating direction cannot be arbitrary but instead it

must begin in the row’s direction and subsequently in the

column’s. Figure 7 and Algorithm 2 summarise this stage

in the mapping procedure.

4.3 Data interpolation procedure

The CUDA version of the data interpolation procedure has

a similar design to the general approach described in Sect.

3.2. However, there are three concerns to be addressed. The

first concern is related to the memory micromanagement.

On the input omnidirectional view image, coalesced access

is impossible since bilinear interpolation requires a random

access, thus it is best placed in the TM. Another advantage

of the TM in this case is the theoretically faster bilinear

Fig. 6 The sequence design of

the GPU kernel for stages 1 and

2 in the mapping procedure. k is

the warp size

J Real-Time Image Proc

123



interpolation that can be performed by the hardware

function. Various works (e.g. [2, 13, 18, 20, 21]) had also

reported a similar efficiency of the in-built bilinear inter-

polation. On the output image, it has to be allocated in the

GM since it has abundant space and is writable.

The second concern is related to the optimisation for

coalesced access of the unwrapped image stored on the

GM. In general, the coalesced access is achieved if the

unwrapped image is arranged so that each of the 32 con-

secutive pixels (assuming 4 colour channels) in the image

is aligned on a 128-byte block. While this arrangement is

naturally obtained for most cases of applications, a special

preconditioning is required to achieve it in this data

interpolation procedure.

The reason for this is due to the partitioning of the

projection planes in the mapping procedure. Consider a

projection plane with p8 and p1 as an example, where p8 is

the mirror of p1. The unwrapped image referred p1 from

the look-up table. However, because the width of the

projection plane is not constrained to a multiple of 32

pixels, the access to the unwrapped image space is always

offset by mod w=32ð Þ where w is the width of the projec-

tion plane. On other projection planes, the offsets are

accumulated due to the same reason.

In order to correct the alignment, a preconditioning has

to be applied to properly insert paddings between the

projection planes as shown in Fig. 8. These paddings will

eventually become column gaps in the unwrapped image.

However, because there is no perspective continuity among

the projection planes, the gaps do not raise any additional

issue other than that of appearance-wise. If the gaps must

be removed for some reasons, it is still achievable without

performance penalty. When the image is to be transferred

from the global memory to the RAM, the process is sep-

arated into four iterations, with each carrying one-forth

portion of the unwrapped image offset by the paddings and

thus indirectly removes the gaps.

The third concern is related to the number of colour

channel in the unwrapped image. Previously in the second

concern, the example assumes a 32-bit image that has four

colour channels. The 32-bit image coalesced naturally

Fig. 7 The sequence design of the GPU kernel of stage three in the

mapping procedure
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when the above preconditioning is applied. However, for a

24-bit image to comply with the requirement, the output for

a 24-bit image needs to be converted into a 32-bit image

(i.e. by adding a dummy channel). The extra colour

channel is usually used to represent transparency in the

image and can be safety set to full opacity. Since the GM

has space redundancy, the extra colour channel is justifi-

able for the speed gained.

On the kernel implementation, each thread processes a

single pixel in each half-plane in the output image and

basically follows the design of the general approach. First,

the input image is split into multiple 2D arrays of its own

colour channel and loaded to the TM. Then, each thread

resolves the required coordinates from LUTx and LUTy;

and subsequently interpolates data from the TM. After each

colour channel is processed, they are stored together as a

4-byte uchar4 data type [16] to the allocated GM to

achieve coalesced access. Again, for the purpose of coa-

lescing, the kernel blocks are designed with widths in the

multiple of the warp size. However, note that due to the

mirroring effect in each subsequent half-plane as discussed

in Sect. 3.2, GPUs with compute capability of 1.1 can only

maintain coalescing at 50 % of the time (refer Sect. 4.1). A

summary of the GPU kernel implementation is provided in

Fig. 9 and Algorithm 3.

5 Results and discussion

5.1 Requirements for real-time performance

The requirements set to qualify the unwrapping process as

real-time are that (1) a reasonable frame rate is reached and

(2) the data processed in each frame exceed a resolution

that is considered reasonably high to date. As of the writing

of this paper, most Universal Serial Port powered cameras

(commonly known as ‘‘webcams’’) have an average frame-

per-second (fps) performance of 25. For the second

requirement, the high-definition (HD) 720p standard of

1,280 9 720 pixels on each projection plane is considered.

The mapping procedure was tested on maps with sizes

180 9 180, 360 9 360, and 720 9 720 pixels. Similarly,

the data interpolation procedure was tested on output images

with sizes 1,440 9 180, 2,880 9 360, and 5,760 9 720

pixels. Note that the largest image size used in the data

interpolation procedure exceeded the HD 720p resolution in

all projection planes. All results in the experiments were

obtained by averaging over 100 iterations to reduce the

effect of unaccountable factors during real-time execution.

5.2 Hardware specification

The general parallelisation discussed in Sect. 3 will be

tested using Intel Core i7-3770 that has a stock clock speed

of 3.4 GHz, which is by far the fastest one from Intel. It has

Fig. 8 Paddings are added to

the unwrapped image so that

coalesced access to the global

memory is achieved
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four physical cores but support eight concurrent threads

due to Intel’s ‘‘Hyper Threading’’ technology. Multi-core

processing on Intel CPU is enabled via the use of the

‘‘Threading Building Block’’ library [10].

The CUDA adaptation in Sect. 4 on the other will be

tested on a high-end and a low-end NVIDIA GPUs. NVI-

DIA GeForce GTX 645 is a high-end GPU that has three

MPs with compute capabilities of 3.0, while NVIDIA

GeForce 9500 GS is a low-end GPU with four MPs of

compute capability 1.1. The compute capability mainly

translates to the arithmetic throughput of each MP with 192

and 8 operations per clock cycle [16], respectively on the

GTX 645 and the 9500 GS. The total MP throughput, also

commonly known as the total ‘‘CUDA cores’’, therefore is

576 and 32, respectively on each device. The clock rates

for both GPUs are 834 and 1,375 MHz, respectively.

Apart from that, it is also noteworthy that the 9500 GS

uses the more inferior PCI-Express 1.1 data bus that will

limit the memory transfer speed and this will be reflected in

the less optimised performance in the memory transfer

between the GM and the RAM. Nevertheless, although the

9500 GS is significantly lacking in terms of hardware

capability, it has the advantage of been more cost effective

at the time of writing and thus is included in the compar-

ison. Table 1 summarises the various noteworthy specifi-

cations of the GPUs in test.

5.3 Kernel block size optimisation

Several GPU kernels discussed in Sect. 4 have no restric-

tion on one or more of their block dimensions. In general,

apart from factors due to warp size, design restriction, and

hardware limitation, the selection of a kernel block’s

dimension should also take the GPU’s MP occupancy into

account. Since each MP can process multiple number of

warps simultaneously, the dimensions of the block can be

adjusted to obtain an optimum configuration that fully

occupies the MPs’ resources. In theory, this optimisation

helps in reducing the effect of memory access latency for a

kernel that has a relatively low computational load [16].

Nevertheless, empirical experiments that exhaustively test

on different configurations are needed to confirm the actual

optimisation gain, if any. The largest data sizes (720 9 720

and 5,760 9 720 pixels, respectively) were used for this

part of the experiments to contrast a more significant dif-

ference in the performance.

Fig. 9 Implementation of the data interpolation procedure in CUDA

Table 1 Specifications of the GPUs in test

GeForce

GTX 645

GeForce

9500 GS

Clock rate (MHz) 834 1,375

Compute capability 3.0 1.1

PCI-express 3.0 1.1

CUDA core 576 32

Multi processor 3 4

Warp size 32 threads

Global memory (MB) 1,048 512

Shared memory per MP (KB) 48 16

Register (32 bit) per block 65,536 8,192

Constant memory (B) 65,536
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The MP occupancy is basically calculated from the

number of warp executable by each MP versus its allowed

maximum as listed in Table 1 due to a certain block size

configuration. The total executable warp, apart from the

block size, is also affected by the registers and SM avail-

able to each MP. In general, a larger block allows more

concurrent warps but at the same time demands more

registers. As more registers are occupied and more threads

are designated (i.e. larger block), the number of block

allowed in each MP will become limited instead. A more

comprehensive visualisation can be obtained using the

NVIDIA’s CUDA GPU occupancy calculator [15].

The box plots in Fig. 10 show the performances of the

second mapping kernel with varying block sizes. There were

drops in occupancy for 9500 GS at 92 and 160 threads, and

GTX 645 at 160 threads mainly due to a limited hit in register

usage. In general, the speed performance of this kernel was

consistent with minute fluctuation (0.16 ms fluctuation on

average) occurred across different dimension configurations

and a slight advantage at 64 and 224 threads for the GeForce

9500 GS. Due to this reason, it is assumable that the fluctu-

ation is statistically trivial and that processing speed was

mostly stable in different configurations. The GTX 645 also

showed consistent processing speed (7 ls fluctuation on

(a)

(b)

Fig. 10 The second mapping

kernel’s performances with

varying dimensions for both

GPUs using a 720 9 720 pixels

half-plane
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average) with no obvious advantage at either thread config-

uration. These observations were anticipated because the

kernel was designed to work in full coalescing,1 thus keeping

the latencies caused by the memory transfer at minimum.

The performances of the data interpolation kernel for

both GPUs were somewhat different initially as shown in

box plots of Fig. 11. First, on the occupancy, the drops

across the different configurations were mainly due to the

limitation hit on the maximum allowable threads in a MP.

Onto the performance, for the 9500 GS, it began at a less

optimum speed at 32 threads but improved at the

subsequent thread block sizes. The performance was again

observed to be consistent with minor fluctuation after-

wards. For the GTX 645, its processing speed was optimum

at 64 threads but worsened at larger block size and satu-

rated afterwards. The reason for this could be due to the

limitation in image segmentation. Since the output image

was processed by segmenting it into a size similar to the

kernel block, if the segmentation ended with an odd

number segment, one of the processing slots would be idle

eventually at run-time. The risk of increasing the block size

is that if the mentioned situation occurred, the idling slot

would be idle for a longer period because each segment

would have more data to be processed. On the other hand,

at 32 threads, the main contributing factor would be the MP

(a)

(b)

Fig. 11 The data interpolation

kernel’s performance under

varying dimension for both

GPUs. The data used were a

24-bit 5,760 9 720 pixels

image

1 The coalesced access of the unwrapping kernel can be confirmed

using the NVIDIA visual profiler [17].
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occupancy. The case of the 9500 GS was in fact similar to

the GTX 645 but appeared differently because its effi-

ciency at 32 threads was far worse than that of the GTX

645, and there was no obvious optimum thread block size

at subsequent sizes as they saturated too soon.

On a separate note, the graphs show only the total thread

count because it was observed that all possible vertical and

horizontal dimension combinations that produced the same

number of threads had a similar performance as long as the

horizontal dimension was in a multiple of the warp size. In

general, the improvement gained from this kernel block

optimisation was marginal (*1 or 2 ms), albeit the best

configurations were obtained. This indirectly implies an

effective design of the respective kernels.

5.4 Performance of the unwrapping process

The performances of the mapping and data interpolation

procedures in the unwrapping process are separately

compared in Figs. 12 and 13, respectively. The kernel

block size optimisation was also applied in this compari-

son. Note that during the GPU data interpolation, the gaps

in the unwrapped image were eliminated using the memory

transfer trick discussed in Sect. 3.

As shown in Fig. 14, the data interpolation procedure

running on the GPUs requires a memory transfer prior to

and after kernel execution. An omnidirectional image from

a video stream needs to be copied over to the GM before it

is unwrapped, after which the unwrapped output is trans-

ferred back to the RAM so that it is accessible by a CPU.

However, at times, applications may require further pro-

cessing (e.g. computer vision applications) after the image

is unwrapped. Thus, the final data transfer can be avoided

provided that any further processing is completed in the

GPU. If this is the case, there can be an additional saving

on the processing time by approximately 50 %.

5.5 Summaries

Tables 2 and 3 summarise the performances of the unwrap-

ping process expressed in fps respectively under the two dif-

ferent states (stable and transition) discussed in Sect. 3.

Fig. 12 The performances of

the mapping procedure using

various hardware. S and M refer

to the single-core and multi-core

environments, respectively

Fig. 13 The performances of

the data interpolation procedure

using various hardware. S and M

refer to the single-core and

multi-core environments,

respectively
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Both GPUs were delivering performances meeting the

real-time requirements. On the largest image size, the 9500

GS had a marginal real-time performance when it was

executed without the memory transfer advantage. This is

largely due to the fact that the hardware’s technology is

about two generations out of date and there is a weakness

with memory coalescing as discussed in Sect. 3. On the

other hand, the GTX 645 was managed to perform at an

over-specification condition. This is important as it will

allow the system to execute other computer vision pro-

cesses after the unwrapping procedure.

On the other hand, the Core i7 was only able to keep up

with the real-time performance on the stable state under

multi-core environment. In addition, its performance is

worse than 9500 GS even when the GPU has a disadvan-

tage on memory transfer. Considering the cost of the CPU

versus this two-generation old GPU, the price/performance

ratio of the Core i7 in general is not satisfactory for the

purpose of this unwrapping problem. Keeping aside this

issue, there is a high chance that the CPU is also unable to

execute any subsequent computer vision processes without

sacrificing its fps performance.

6 Conclusion

In this paper, we have proposed a real-time implementation

approach for cuboid panoramic omnidirectional view image

unwrapping. Initially, we discussed a general parallelisation

of the said process where the NR algorithm is adopted into a

parallel deployable pattern. Subsequently, we devised vari-

ous optimisation to exploit the platform advantage of CUDA

devices on the proposed parallelisation scheme.

Experiments showed that the Core i7 barely maintained

real-time performance at the stable state while marginally

failed during the transition state. On the other hand, the

(a)

(b)

Fig. 14 The breakdown of the

GPU data interpolation kernel

processing speed for a 24-bit

image

Table 2 The performance of the unwrapping process (fps) under

stable state

Output size (px) Performance (fps)

1,440 9 180 2,880 9 360 5,760 9 720

Core i7 (M) 462.87 112.19 28.94

Core i7 (S) 84.49 21.37 5.39

GTX 645 1,104.84 541.85 175.61

9500 GS 267.90 94.22 29.13

GTX 645 (T) 1,806.53 1,096.32 397.92

9500 GS (T) 482.88 186.94 52.73

A boldfaced value denotes real-time performance

S single-core, M multi-core, T with memory transfer advantage (i.e. no
output memory transfer)

Table 3 The performance of the unwrapping process (fps) under

transition state

Output size (px) Performance (fps)

1,440 9 180 2,880 9 360 5,760 9 720

Core i7 (M) 370.06 91.65 23.37

Core i7 (S) 84.49 21.37 5.39

GTX 645 765.62 340.77 111.81

9500 GS 233.88 82.58 25.25

GTX 645 (T) 1,047.60 499.70 165.41

9500 GS (T) 382.59 146.08 41.24

A boldfaced value denotes real-time performance

S single-core, M multi-core, T with memory transfer advantage (i.e. no
output memory transfer)
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GTX 645 had considerably surpassed the specification of

real-time implementation set, thus allowing further exe-

cutions of other computer vision algorithms when neces-

sary. At the most tasking transition state, the GTX 645 was

able to deliver outputs that exceed the HD 720p resolution

at approximately 165 and 112 fps, with and without a

memory transfer advantage, respectively. The two-gener-

ation old 9500 GS, albeit marginal, was also producing a

real-time performance at 25 and 41 fps.

For future work, we will integrate the state-of-the-art

visual detection algorithms into existing platforms by tak-

ing advantage of the over-specification performance.
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